{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,24]],"date-time":"2025-03-24T08:08:39Z","timestamp":1742803719460,"version":"3.37.3"},"reference-count":26,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100009886","name":"Puglia Region","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100009886","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Associazione Produttori Esportatori Ortofrutticoli"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers and Electronics in Agriculture"],"published-print":{"date-parts":[[2019,1]]},"DOI":"10.1016\/j.compag.2018.12.019","type":"journal-article","created":{"date-parts":[[2018,12,13]],"date-time":"2018-12-13T07:37:43Z","timestamp":1544686663000},"page":"558-564","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":63,"special_numbering":"C","title":["Non-destructive and contactless quality evaluation of table grapes by a computer vision system"],"prefix":"10.1016","volume":"156","author":[{"given":"Dario Pietro","family":"Cavallo","sequence":"first","affiliation":[]},{"given":"Maria","family":"Cefola","sequence":"additional","affiliation":[]},{"given":"Bernardo","family":"Pace","sequence":"additional","affiliation":[]},{"given":"Antonio Francesco","family":"Logrieco","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-9249-1200","authenticated-orcid":false,"given":"Giovanni","family":"Attolico","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compag.2018.12.019_b0005","doi-asserted-by":"crossref","first-page":"213","DOI":"10.1016\/j.postharvbio.2011.05.004","article-title":"Post-cutting quality changes of fresh-cut artichokes treated with different anti-browning agents as evaluated by image analysis","volume":"62","author":"Amodio","year":"2011","journal-title":"Postharvest Biol. Technol."},{"key":"10.1016\/j.compag.2018.12.019_b0010","series-title":"Produce Quality Rating Scales and Colour Charts, Postharvest Horticulture Series No. 23","article-title":"Implementation of rating scales for visual quality evaluation of various vegetable crops","author":"Amodio","year":"2007"},{"key":"10.1016\/j.compag.2018.12.019_b0015","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1016\/j.compag.2018.02.021","article-title":"vitisBerry: an Android-smartphone application to early evaluate the number of grapevine berries by means of image analysis","volume":"148","author":"Aquino","year":"2018","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2018.12.019_b0020","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2017.11.026","article-title":"Automated early yield prediction in vineyards from on-the-go image acquisition","author":"Aquino","year":"2018","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2018.12.019_b0025","doi-asserted-by":"crossref","first-page":"1697","DOI":"10.1021\/jf990974e","article-title":"Correlation of lycopene measured by HPLC with the L*, a*, b* colour readings of a hydroponic tomato and the relationship of maturity with colour and lycopene content","volume":"48","author":"Arias","year":"2000","journal-title":"J. Agr. Food Chem."},{"key":"10.1016\/j.compag.2018.12.019_b0030","doi-asserted-by":"crossref","first-page":"106","DOI":"10.1016\/j.postharvbio.2017.08.016","article-title":"Evaluation of methods for determining rachis browning in table grapes","volume":"134","author":"Bahar","year":"2017","journal-title":"Postharvest Biol. Technol."},{"key":"10.1016\/j.compag.2018.12.019_b0035","doi-asserted-by":"crossref","first-page":"142","DOI":"10.1016\/j.compag.2012.06.002","article-title":"Application of hyperspectral imaging for prediction of physico-chemical and sensory characteristics of table grapes","volume":"87","author":"Baiano","year":"2012","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2018.12.019_b0040","series-title":"Measurement, Modeling and Automation in Advanced Food Processing. Advances in Biochemical Engineering\/Biotechnology","first-page":"71","article-title":"Machine vision-based measurement systems for fruit and vegetable quality control in postharvest","author":"Blasco","year":"2017"},{"key":"10.1016\/j.compag.2018.12.019_b0045","doi-asserted-by":"crossref","first-page":"303","DOI":"10.1016\/j.compag.2017.06.012","article-title":"Contactless and non-destructive chlorophyll content prediction by random forest regression: a case study on fresh-cut rocket leaves","volume":"140","author":"Cavallo","year":"2017","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2018.12.019_b0050","doi-asserted-by":"crossref","first-page":"46","DOI":"10.1016\/j.jfoodeng.2017.11.042","article-title":"Non-destructive automatic quality evaluation of fresh-cut iceberg lettuce through packaging material","volume":"223","author":"Cavallo","year":"2018","journal-title":"J. Food Eng."},{"key":"10.1016\/j.compag.2018.12.019_b0055","doi-asserted-by":"crossref","first-page":"124","DOI":"10.1016\/j.postharvbio.2017.09.002","article-title":"Relationships among volatile metabolites, quality and sensory parameters of \u2018Italia\u2019 table grapes assessed during cold storage in low or high CO2 modified atmospheres","volume":"142","author":"Cefola","year":"2018","journal-title":"Postharvest Biol. Technol."},{"issue":"6","key":"10.1016\/j.compag.2018.12.019_b0065","doi-asserted-by":"crossref","first-page":"1274","DOI":"10.1002\/jsfa.6819","article-title":"Assessment of cluster yield components by image analysis","volume":"95","author":"Diago","year":"2015","journal-title":"J. Sci. Food Agric."},{"key":"10.1016\/j.compag.2018.12.019_b0070","doi-asserted-by":"crossref","first-page":"161","DOI":"10.1111\/ajgw.12205","article-title":"Rachis browning in table grapes","volume":"22","author":"Lichter","year":"2016","journal-title":"Aust. J. Grape Wine Res."},{"key":"10.1016\/j.compag.2018.12.019_b0075","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1016\/j.tifs.2017.08.013","article-title":"Hyperspectral imaging technique for evaluating food quality and safety during various processes: a review of recent applications","volume":"69","author":"Liu","year":"2017","journal-title":"Trends Food Sci. Technol."},{"key":"10.1016\/j.compag.2018.12.019_b0080","doi-asserted-by":"crossref","first-page":"586","DOI":"10.1016\/j.foodchem.2013.12.030","article-title":"Determination of technological maturity of grapes and total phenolic compounds of grape skins in red and white cultivars during ripening by near infrared hyperspectral image: a preliminary approach","volume":"152","author":"Nogales-Bueno","year":"2014","journal-title":"Food Chem."},{"key":"10.1016\/j.compag.2018.12.019_b0085","unstructured":"OIV, 2008. Resolution VITI 1\/2008: OIV standard on minimum maturity requirements for table grapes."},{"key":"10.1016\/j.compag.2018.12.019_b0090","first-page":"1","article-title":"Automatic identification of relevant colors in non-destructive quality evaluation of fresh salad vegetables","volume":"4","author":"Pace","year":"2017","journal-title":"Int. J. Food Process. Technol."},{"key":"10.1016\/j.compag.2018.12.019_b0095","doi-asserted-by":"crossref","first-page":"200","DOI":"10.1016\/j.ifset.2015.10.001","article-title":"Adaptive self-configuring computer vision system for quality evaluation of fresh-cut radicchio","volume":"32","author":"Pace","year":"2015","journal-title":"Innov. Food Sci. Emerg. Technol."},{"key":"10.1016\/j.compag.2018.12.019_b0100","doi-asserted-by":"crossref","first-page":"647","DOI":"10.1016\/j.foodres.2014.07.037","article-title":"Non-destructive evaluation of quality and ammonia content in whole and fresh-cut lettuce by computer vision system","volume":"64","author":"Pace","year":"2014","journal-title":"Food Res. Int."},{"issue":"2","key":"10.1016\/j.compag.2018.12.019_b0105","doi-asserted-by":"crossref","first-page":"178","DOI":"10.1016\/j.postharvbio.2011.03.005","article-title":"Relationship between visual appearance and browning as evaluated by image analysis and chemical traits in fresh-cut nectarines","volume":"61","author":"Pace","year":"2011","journal-title":"Postharvest Biol. Technol."},{"key":"10.1016\/j.compag.2018.12.019_b0110","doi-asserted-by":"crossref","first-page":"123","DOI":"10.1007\/s13197-011-0321-4","article-title":"Machine vision system: a tool for quality inspection of food and agricultural products","volume":"49","author":"Patel","year":"2012","journal-title":"J. Food Sci. Technol."},{"issue":"16","key":"10.1016\/j.compag.2018.12.019_b0115","doi-asserted-by":"crossref","first-page":"72","DOI":"10.1016\/j.ifacol.2016.10.014","article-title":"Automated assessment and mapping of grape quality through image-based color analysis","volume":"49","author":"Pothen","year":"2016","journal-title":"IFAC-Pap. OnLine"},{"key":"10.1016\/j.compag.2018.12.019_b0120","doi-asserted-by":"crossref","first-page":"88","DOI":"10.1016\/j.postharvbio.2013.03.021","article-title":"Rachis browning in four table grape cultivars as affected by growth regulators or packaging","volume":"84","author":"Raban","year":"2013","journal-title":"Postharvest Biol. Technol."},{"key":"10.1016\/j.compag.2018.12.019_b0125","series-title":"2014 IEEE Symposium on Computational Intelligence for Multimedia, Signal and Vision Processing (CIMSIVP)","first-page":"1","article-title":"Identification of mature grape bunches using image processing and computational intelligence methods","author":"Rahman","year":"2014"},{"key":"10.1016\/j.compag.2018.12.019_b0130","doi-asserted-by":"crossref","first-page":"128","DOI":"10.1016\/j.compag.2012.01.004","article-title":"Ripeness estimation of grape berries and seeds by image analysis","volume":"82","author":"Rodr\u00ecguez-Pulido","year":"2012","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2018.12.019_b0135","doi-asserted-by":"crossref","DOI":"10.1002\/jsfa.8864","article-title":"Combining color chart, colorimetric measurement and chemical compounds for postharvest quality of white wine grapes","author":"Sollazzo","year":"2018","journal-title":"J. Sci. Food Agric."}],"container-title":["Computers and Electronics in Agriculture"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169918308585?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169918308585?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,1,4]],"date-time":"2019-01-04T06:25:13Z","timestamp":1546583113000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0168169918308585"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,1]]},"references-count":26,"alternative-id":["S0168169918308585"],"URL":"https:\/\/doi.org\/10.1016\/j.compag.2018.12.019","relation":{},"ISSN":["0168-1699"],"issn-type":[{"type":"print","value":"0168-1699"}],"subject":[],"published":{"date-parts":[[2019,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Non-destructive and contactless quality evaluation of table grapes by a computer vision system","name":"articletitle","label":"Article Title"},{"value":"Computers and Electronics in Agriculture","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compag.2018.12.019","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2018 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}