{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T17:40:12Z","timestamp":1732038012927},"reference-count":49,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2019,12,13]],"date-time":"2019-12-13T00:00:00Z","timestamp":1576195200000},"content-version":"am","delay-in-days":346,"URL":"http:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/100011508","name":"Florida Department of Agriculture and Consumer Services, USDA Specialty Block","doi-asserted-by":"publisher","award":["019730"],"id":[{"id":"10.13039\/100011508","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100012964","name":"Ministry of Higher Education and Scientific Research","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100012964","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers and Electronics in Agriculture"],"published-print":{"date-parts":[[2019,1]]},"DOI":"10.1016\/j.compag.2018.12.018","type":"journal-article","created":{"date-parts":[[2018,12,13]],"date-time":"2018-12-13T07:04:18Z","timestamp":1544684658000},"page":"549-557","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":84,"special_numbering":"C","title":["A remote sensing technique for detecting laurel wilt disease in avocado in presence of other biotic and abiotic stresses"],"prefix":"10.1016","volume":"156","author":[{"given":"Jaafar","family":"Abdulridha","sequence":"first","affiliation":[]},{"given":"Reza","family":"Ehsani","sequence":"additional","affiliation":[]},{"given":"Amr","family":"Abd-Elrahman","sequence":"additional","affiliation":[]},{"given":"Yiannis","family":"Ampatzidis","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compag.2018.12.018_b0005","doi-asserted-by":"crossref","first-page":"203","DOI":"10.1016\/j.compag.2018.10.016","article-title":"Evaluating the performance of spectral features and multivariate analysis tools to detect Laurel wilt disease and nutritional deficiency in avocado","volume":"155","author":"Abdulridha","year":"2018","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2018.12.018_b0010","first-page":"13","article-title":"Detection and differentiation between laurel wilt disease, phytophthora disease, and salinity damage using a hyperspectral sensing technique","volume":"6","author":"Abdulridha","year":"2016","journal-title":"Agriculture-Basel"},{"key":"10.1016\/j.compag.2018.12.018_b0015","unstructured":"Ampatzidis Y., and Cruz A.C. 2018. Plant disease detection utilizing artificial intelligence and remote sensing. International Congress of Plant Pathology (ICPP) 2018: Plant Health in a Global Economy, July 29 \u2013 August 3, Boston, USA."},{"key":"10.1016\/j.compag.2018.12.018_b0020","first-page":"9","article-title":"iPathology: Robotic Applications and Management of Plants and Plant Diseases","author":"Ampatzidis","year":"2017","journal-title":"Sustainability"},{"key":"10.1016\/j.compag.2018.12.018_b0025","doi-asserted-by":"crossref","first-page":"148","DOI":"10.1016\/j.compag.2005.10.002","article-title":"Integrating multispectral reflectance and fluorescence imaging for defect detection on apples","volume":"50","author":"Ariana","year":"2006","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2018.12.018_b0030","doi-asserted-by":"crossref","first-page":"699","DOI":"10.1080\/014311697218700","article-title":"Neural networks in remote sensing - introduction","volume":"18","author":"Atkinson","year":"1997","journal-title":"Int. J. Remote Sens."},{"key":"10.1016\/j.compag.2018.12.018_b0035","doi-asserted-by":"crossref","first-page":"220","DOI":"10.1016\/j.postharvbio.2008.07.014","article-title":"Spectral reflectance characteristics of citrus canker and other peel conditions of grapefruit","volume":"51","author":"Balasundaram","year":"2009","journal-title":"Postharvest Biol. Technol."},{"key":"10.1016\/j.compag.2018.12.018_b0040","doi-asserted-by":"crossref","first-page":"540","DOI":"10.1109\/TGRS.1990.572944","article-title":"Neural network approaches versus statistical-methods in classification of multisource remote-sensing data","volume":"28","author":"Benediktsson","year":"1990","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.compag.2018.12.018_b0045","doi-asserted-by":"crossref","first-page":"181","DOI":"10.1016\/S0166-0934(02)00284-7","article-title":"Detection of potato viruses using microarray technology: towards a generic method for plant viral disease diagnosis","volume":"108","author":"Boonham","year":"2003","journal-title":"J. Virol. Methods"},{"key":"10.1016\/j.compag.2018.12.018_b0050","doi-asserted-by":"crossref","first-page":"9","DOI":"10.1016\/j.biosystemseng.2008.09.030","article-title":"An image-processing based algorithm to automatically identify plant disease visual symptoms","volume":"102","author":"Camargo","year":"2009","journal-title":"Biosyst. Eng."},{"key":"10.1016\/j.compag.2018.12.018_b0055","doi-asserted-by":"crossref","first-page":"121","DOI":"10.1016\/j.compag.2009.01.003","article-title":"Image pattern classification for the identification of disease causing agents in plants","volume":"66","author":"Camargo","year":"2009","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2018.12.018_b0060","first-page":"9","article-title":"Specific fluorescence in situ hybridization (fish) test to highlight colonization of xylem vessels by xylella fastidiosa in naturally infected olive trees (Olea europaea L.)","author":"Cardinale","year":"2018","journal-title":"Frontiers Plant Sci."},{"key":"10.1016\/j.compag.2018.12.018_b0065","doi-asserted-by":"crossref","first-page":"1414","DOI":"10.1109\/83.536890","article-title":"RGB calibration for color image analysis in machine vision","volume":"5","author":"Chang","year":"1996","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.compag.2018.12.018_b0070","doi-asserted-by":"crossref","first-page":"239","DOI":"10.1016\/0034-4257(92)90089-3","article-title":"Ration analysis of reflectance spectra (RARS)-An algorithm for the remote estimation concentration of chlorophyll-a, chlorophyll-b, and carotenoid soybean leaves","volume":"39","author":"Chappelle","year":"1992","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.compag.2018.12.018_b0075","first-page":"8","article-title":"X-FIDO: an effective application for detecting olive quick decline syndrome with deep learning and data fusion","author":"Cruz","year":"2017","journal-title":"Frontiers Plant Sci."},{"key":"10.1016\/j.compag.2018.12.018_b0080","doi-asserted-by":"crossref","first-page":"33","DOI":"10.1016\/j.rse.2015.09.011","article-title":"Optimum spectral and geometric parameters for early detection of laurel wilt disease in avocado","volume":"171","author":"De Castro","year":"2015","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.compag.2018.12.018_b0085","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0124642","article-title":"Detection of laurel wilt disease in avocado using low altitude aerial Imaging","volume":"10","author":"de Castro","year":"2015","journal-title":"Plos One"},{"key":"10.1016\/j.compag.2018.12.018_b0090","article-title":"Development of a real-time PCR assay for detection of the Raffaelea species causing Laurel wilt disease","volume":"98","author":"Dreaden","year":"2008","journal-title":"Phytopathology"},{"key":"10.1016\/j.compag.2018.12.018_b0095","doi-asserted-by":"crossref","first-page":"234","DOI":"10.21273\/HORTTECH.20.1.234","article-title":"Potential economic impact of laurel wilt disease on the Florida avocado industry","volume":"20","author":"Evans","year":"2010","journal-title":"Horttechnology"},{"key":"10.1016\/j.compag.2018.12.018_b0100","first-page":"391","article-title":"Classification of remotely-sensed data by an artificial neural-network - issues related to training data characteristics Photogramm","volume":"61","author":"Foody","year":"1995","journal-title":"Eng. Remote Sens."},{"key":"10.1016\/j.compag.2018.12.018_b0105","doi-asserted-by":"crossref","first-page":"215","DOI":"10.1094\/PDIS-92-2-0215","article-title":"A fungal symbiont of the redbay ambrosia beetle causes a lethal wilt in redbay and other Lauraceae in the southeastern United States","volume":"92","author":"Fraedrich","year":"2008","journal-title":"Plant Dis."},{"key":"10.1016\/j.compag.2018.12.018_b0110","series-title":"Determining HLB infection levels using multiple survey methods in florida citrus","author":"Futach","year":"2009"},{"key":"10.1016\/j.compag.2018.12.018_b0115","doi-asserted-by":"crossref","first-page":"271","DOI":"10.1078\/0176-1617-00887","article-title":"Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves","volume":"160","author":"Gitelson","year":"2003","journal-title":"J. Plant Physiol."},{"key":"10.1016\/j.compag.2018.12.018_b0120","doi-asserted-by":"crossref","first-page":"9","DOI":"10.1016\/j.biosystemseng.2005.02.007","article-title":"Hyperspectral crop reflectance data for characterising and estimating fungal disease severity in wheat","volume":"91","author":"Hamed Hamid","year":"2005","journal-title":"Biosyst. Eng."},{"key":"10.1016\/j.compag.2018.12.018_b0125","doi-asserted-by":"crossref","first-page":"1417","DOI":"10.1080\/01431168608948945","article-title":"Characteristics of maximum-value composite images from temporal AVHRR data","volume":"7","author":"Holben","year":"1986","journal-title":"Int. J. Remote Sens."},{"key":"10.1016\/j.compag.2018.12.018_b0130","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1023\/A:1021863005378","article-title":"Automatic plant identification with chlorophyll fluorescence fingerprinting","volume":"4","author":"Keranen","year":"2003","journal-title":"Precis. Agric."},{"key":"10.1016\/j.compag.2018.12.018_b0135","doi-asserted-by":"crossref","first-page":"2543","DOI":"10.1098\/rsta.1999.0447","article-title":"Image processing with complex wavelets","volume":"357","author":"Kingsbury","year":"1999","journal-title":"Philos. Trans. Royal Soc. a-Math. Phys. Eng. Sci."},{"key":"10.1016\/j.compag.2018.12.018_b0140","doi-asserted-by":"crossref","first-page":"1471","DOI":"10.1109\/36.934078","article-title":"Discrimination of arid vegetation with airborne multispectral scanner hyperspectral imagery","volume":"39","author":"Lewis","year":"2001","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.compag.2018.12.018_b0145","first-page":"8","article-title":"Plant pathology and information technology: opportunity for management of disease outbreak and applications in regulation frameworks","author":"Luvisi","year":"2016","journal-title":"Sustainability"},{"key":"10.1016\/j.compag.2018.12.018_b0150","doi-asserted-by":"crossref","first-page":"222","DOI":"10.1094\/PDIS.1997.81.2.222","article-title":"Improved RNA extraction from woody plants for the detection of viral pathogens by reverse transcription-polymerase chain reaction","volume":"81","author":"MacKenzie","year":"1997","journal-title":"Plant Dis."},{"key":"10.1016\/j.compag.2018.12.018_b0155","doi-asserted-by":"crossref","first-page":"317","DOI":"10.48044\/jauf.2008.043","article-title":"Effect of propiconazole on laurel wilt disease development in redbay trees and on the pathogen in vitro","volume":"34","author":"Mayfield","year":"2008","journal-title":"Arboriculture Urban Forestry"},{"key":"10.1016\/j.compag.2018.12.018_b0160","doi-asserted-by":"crossref","first-page":"485","DOI":"10.1653\/0015-4040(2008)91[485:AOTRAB]2.0.CO;2","article-title":"Ability of the redbay ambrosia beetle (Coleoptera : Curculionidae : Scolytinae) to bore into young avocado (Lauraceae) plants and transmit the laurel wilt pathogen (Raffaelea sp.)","volume":"91","author":"Mayfield","year":"2008","journal-title":"Florida Entomol."},{"key":"10.1016\/j.compag.2018.12.018_b0165","first-page":"12","article-title":"A comparison of stereomicroscope and image analysis for quantifying fruit traits","volume":"25","author":"Mix","year":"2003","journal-title":"Seed Technol."},{"key":"10.1016\/j.compag.2018.12.018_b0170","doi-asserted-by":"crossref","first-page":"75","DOI":"10.1016\/j.rti.2005.03.003","article-title":"Plant disease detection based on data fusion of hyper-spectral and multi-spectral fluorescence imaging using Kohonen maps","volume":"11","author":"Moshou","year":"2005","journal-title":"Real-Time Imaging"},{"key":"10.1016\/j.compag.2018.12.018_b0175","doi-asserted-by":"crossref","first-page":"489","DOI":"10.1146\/annurev.py.33.090195.002421","article-title":"Remote sensing and image analysis in plant pathology","volume":"33","author":"Nilsson","year":"1995","journal-title":"Annu. Rev. Phytopathol."},{"key":"10.1016\/j.compag.2018.12.018_b0180","doi-asserted-by":"crossref","first-page":"201","DOI":"10.1016\/j.compag.2009.02.004","article-title":"Green citrus detection using hyperspectral imaging","volume":"66","author":"Okamoto","year":"2009","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2018.12.018_b0185","first-page":"221","article-title":"Semiempirical indexes to assess carotenoids chlorophyll-A ratio from leaf spectral reflectance","volume":"31","author":"Penuelas","year":"1995","journal-title":"Photosynthetica"},{"key":"10.1016\/j.compag.2018.12.018_b0190","doi-asserted-by":"crossref","first-page":"183","DOI":"10.1016\/j.jfoodeng.2009.01.014","article-title":"Detection of citrus canker using hyperspectral reflectance imaging with spectral information divergence","volume":"93","author":"Qin","year":"2009","journal-title":"J. Food Eng."},{"key":"10.1016\/j.compag.2018.12.018_b0195","doi-asserted-by":"crossref","first-page":"115","DOI":"10.1016\/j.jag.2005.03.004","article-title":"Detection of rice sheath blight for in-season disease management using multispectral remote sensing","volume":"7","author":"Qin","year":"2005","journal-title":"Int. J. Appl. Earth Observat. Geoinfo."},{"key":"10.1016\/j.compag.2018.12.018_b0200","doi-asserted-by":"crossref","first-page":"1034","DOI":"10.1603\/0013-8746(2006)99[1034:ROAXCC]2.0.CO;2","article-title":"Review of American Xyleborina (Coleoptera : Curculionidae : Scolytinae) occurring North of Mexico, with an illustrated key","volume":"99","author":"Rabaglia","year":"2006","journal-title":"Ann. Entomol. Soc. Am."},{"key":"10.1016\/j.compag.2018.12.018_b0205","doi-asserted-by":"crossref","first-page":"313","DOI":"10.13031\/2013.41241","article-title":"Detection of huanglongbing disease in citrus using fluorescence spectroscopy","volume":"55","author":"Sankaran","year":"2012","journal-title":"Trans. the Asabe"},{"key":"10.1016\/j.compag.2018.12.018_b0210","doi-asserted-by":"crossref","first-page":"1683","DOI":"10.1094\/PDIS-01-12-0030-RE","article-title":"Evaluation of visible-near infrared reflectance spectra of avocado leaves as a non-destructive sensing tool for detection of laurel wilt","volume":"96","author":"Sankaran","year":"2012","journal-title":"Plant Dis."},{"key":"10.1016\/j.compag.2018.12.018_b0215","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.compag.2010.02.007","article-title":"A review of advanced techniques for detecting plant diseases","volume":"72","author":"Sankaran","year":"2010","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2018.12.018_b0220","doi-asserted-by":"crossref","first-page":"127","DOI":"10.1016\/j.compag.2011.03.004","article-title":"Visible-near infrared spectroscopy for detection of Huanglongbing in citrus orchards","volume":"77","author":"Sankaran","year":"2011","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2018.12.018_b0225","doi-asserted-by":"crossref","DOI":"10.1016\/0034-4257(88)90116-2","article-title":"Radiometric scene normalization using pseudoinvariant features","volume":"26","author":"Schott","year":"1988","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.compag.2018.12.018_b0230","doi-asserted-by":"crossref","first-page":"1331","DOI":"10.1016\/S0167-8655(96)00090-6","article-title":"An experimental comparison of neural and statistical non-parametric algorithms for supervised classification of remote-sensing images","volume":"17","author":"Serpico","year":"1996","journal-title":"Pattern Recogn. Lett."},{"key":"10.1016\/j.compag.2018.12.018_b0235","doi-asserted-by":"crossref","first-page":"1096","DOI":"10.1109\/36.312898","article-title":"A dynamic learning neural-network for remote-sensing applications","volume":"32","author":"Tzeng","year":"1994","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.compag.2018.12.018_b0240","doi-asserted-by":"crossref","first-page":"6177","DOI":"10.1364\/AO.40.006177","article-title":"Image formation in phase-shifting digital holography and applications to microscopy","volume":"40","author":"Yamaguchi","year":"2001","journal-title":"Appl. Opt."},{"key":"10.1016\/j.compag.2018.12.018_b0245","doi-asserted-by":"crossref","first-page":"773","DOI":"10.1016\/j.patrec.2005.11.005","article-title":"Efficient adaptive density estimation per image pixel for the task of background subtraction","volume":"27","author":"Zivkovic","year":"2006","journal-title":"Pattern Recogn. Lett."}],"container-title":["Computers and Electronics in Agriculture"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169918315539?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169918315539?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,9,8]],"date-time":"2022-09-08T04:06:42Z","timestamp":1662610002000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0168169918315539"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,1]]},"references-count":49,"alternative-id":["S0168169918315539"],"URL":"https:\/\/doi.org\/10.1016\/j.compag.2018.12.018","relation":{},"ISSN":["0168-1699"],"issn-type":[{"value":"0168-1699","type":"print"}],"subject":[],"published":{"date-parts":[[2019,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A remote sensing technique for detecting laurel wilt disease in avocado in presence of other biotic and abiotic stresses","name":"articletitle","label":"Article Title"},{"value":"Computers and Electronics in Agriculture","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compag.2018.12.018","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2018 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}