{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,31]],"date-time":"2025-03-31T06:06:09Z","timestamp":1743401169284},"reference-count":28,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers and Electronics in Agriculture"],"published-print":{"date-parts":[[2019,1]]},"DOI":"10.1016\/j.compag.2018.11.033","type":"journal-article","created":{"date-parts":[[2018,12,4]],"date-time":"2018-12-04T16:59:23Z","timestamp":1543942763000},"page":"378-386","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":49,"special_numbering":"C","title":["A contextualized approach for segmentation of foliage in different crop species"],"prefix":"10.1016","volume":"156","author":[{"given":"M.P.","family":"Rico-Fern\u00e1ndez","sequence":"first","affiliation":[]},{"given":"R.","family":"Rios-Cabrera","sequence":"additional","affiliation":[]},{"given":"M.","family":"Castel\u00e1n","sequence":"additional","affiliation":[]},{"given":"H.-I.","family":"Guerrero-Reyes","sequence":"additional","affiliation":[]},{"given":"A.","family":"Juarez-Maldonado","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compag.2018.11.033_b0005","doi-asserted-by":"crossref","first-page":"80","DOI":"10.1016\/j.biosystemseng.2014.06.015","article-title":"Vegetation segmentation robust to illumination variations based on clustering and morphology modelling","volume":"125","author":"Bai","year":"2014","journal-title":"Biosyst. Eng."},{"issue":"4","key":"10.1016\/j.compag.2018.11.033_b0010","doi-asserted-by":"crossref","first-page":"417","DOI":"10.1016\/j.imavis.2004.11.003","article-title":"Unsupervised colour image segmentation applied to printing quality assessment","volume":"23","author":"Bergman","year":"2005","journal-title":"Image Vis. Comput."},{"key":"10.1016\/j.compag.2018.11.033_b0015","doi-asserted-by":"crossref","first-page":"226","DOI":"10.1016\/j.compind.2018.02.003","article-title":"Connected attribute morphology for unified vegetation segmentation and classification in precision agriculture","volume":"98","author":"Bosilj","year":"2018","journal-title":"Comput. Ind."},{"issue":"10","key":"10.1016\/j.compag.2018.11.033_b0020","doi-asserted-by":"crossref","first-page":"1045","DOI":"10.1177\/0278364917720510","article-title":"Agricultural robot dataset for plant classification, localization and mapping on sugar beet fields","volume":"36","author":"Chebrolu","year":"2017","journal-title":"Int. J. Robot. Res."},{"key":"10.1016\/j.compag.2018.11.033_b0025","doi-asserted-by":"crossref","unstructured":"Cicco, M.D., Potena, C., Grisetti, G., Pretto, A., 2017. Automatic model based dataset generation for fast and accurate crop and weeds detection. In: 2017 IEEE\/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5188\u20135195. https:\/\/doi.org\/10.1109\/IROS.2017.8206408.","DOI":"10.1109\/IROS.2017.8206408"},{"issue":"3","key":"10.1016\/j.compag.2018.11.033_b0030","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1007\/BF00994018","article-title":"Support-vector networks","volume":"20","author":"Cortes","year":"1995","journal-title":"Mach. Learn."},{"key":"10.1016\/j.compag.2018.11.033_b0035","first-page":"071662","article-title":"Deep learning based root-soil segmentation from X-ray tomography","author":"Douarre","year":"2016","journal-title":"bioRxiv"},{"issue":"1","key":"10.1016\/j.compag.2018.11.033_b0040","doi-asserted-by":"crossref","first-page":"98","DOI":"10.1007\/s11263-014-0733-5","article-title":"The pascal visual object classes challenge: a retrospective","volume":"111","author":"Everingham","year":"2015","journal-title":"Int. J. Comput. Vision"},{"issue":"Aug","key":"10.1016\/j.compag.2018.11.033_b0045","first-page":"1871","article-title":"Liblinear: a library for large linear classification","volume":"9","author":"Fan","year":"2008","journal-title":"J. Mach. Learn. Res."},{"issue":"5967","key":"10.1016\/j.compag.2018.11.033_b0050","doi-asserted-by":"crossref","first-page":"828","DOI":"10.1126\/science.1183899","article-title":"Precision agriculture and food security","volume":"327","author":"Gebbers","year":"2010","journal-title":"Science"},{"issue":"12","key":"10.1016\/j.compag.2018.11.033_b0055","doi-asserted-by":"crossref","first-page":"11149","DOI":"10.1016\/j.eswa.2012.03.040","article-title":"Support vector machines for crop\/weeds identification in maize fields","volume":"39","author":"Guerrero","year":"2012","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.compag.2018.11.033_b0060","doi-asserted-by":"crossref","first-page":"58","DOI":"10.1016\/j.compag.2013.04.010","article-title":"Illumination invariant segmentation of vegetation for time series wheat images based on decision tree model","volume":"96","author":"Guo","year":"2013","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2018.11.033_b0065","doi-asserted-by":"crossref","first-page":"184","DOI":"10.1016\/j.compag.2016.04.024","article-title":"A survey of image processing techniques for plant extraction and segmentation in the field","volume":"125","author":"Hamuda","year":"2016","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2018.11.033_b0070","doi-asserted-by":"crossref","unstructured":"Haug, S., Ostermann, J., 2014. A crop\/weed field image dataset for the evaluation of computer vision based precision agriculture tasks. In: ECCV Workshops (4), pp. 105\u2013116.","DOI":"10.1007\/978-3-319-16220-1_8"},{"issue":"6","key":"10.1016\/j.compag.2018.11.033_b0075","doi-asserted-by":"crossref","first-page":"6270","DOI":"10.3390\/s110606270","article-title":"Robust crop and weed segmentation under uncontrolled outdoor illumination","volume":"11","author":"Jeon","year":"2011","journal-title":"Sensors"},{"issue":"3","key":"10.1016\/j.compag.2018.11.033_b0080","doi-asserted-by":"crossref","first-page":"308","DOI":"10.1016\/j.biosystemseng.2009.07.001","article-title":"Estimation of leaf area index in cereal crops using red\u2013green images","volume":"104","author":"Kirk","year":"2009","journal-title":"Biosyst. Eng."},{"key":"10.1016\/j.compag.2018.11.033_b0085","series-title":"Computer Vision\u2013ECCV 2012","first-page":"502","article-title":"Leafsnap: a computer vision system for automatic plant species identification","author":"Kumar","year":"2012"},{"key":"10.1016\/j.compag.2018.11.033_b0090","series-title":"2015 Chinese Automation Congress (CAC)","first-page":"474","article-title":"Joint crop and tassel segmentation in the wild","author":"Lu","year":"2015"},{"issue":"2","key":"10.1016\/j.compag.2018.11.033_b0095","doi-asserted-by":"crossref","first-page":"282","DOI":"10.1016\/j.compag.2008.03.009","article-title":"Verification of color vegetation indices for automated crop imaging applications","volume":"63","author":"Meyer","year":"2008","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2018.11.033_b0100","doi-asserted-by":"crossref","first-page":"80","DOI":"10.1016\/j.patrec.2015.10.013","article-title":"Finely-grained annotated datasets for image-based plant phenotyping","volume":"81","author":"Minervini","year":"2016","journal-title":"Pattern Recogn. Lett."},{"key":"10.1016\/j.compag.2018.11.033_b0105","series-title":"Color Image Processing and Applications","author":"Plataniotis","year":"2013"},{"issue":"2","key":"10.1016\/j.compag.2018.11.033_b0110","doi-asserted-by":"crossref","first-page":"111","DOI":"10.1002\/cem.1180080204","article-title":"A pls kernel algorithm for data sets with many variables and fewer objects. Part 1: Theory and algorithm","volume":"8","author":"R\u00e4nnar","year":"1994","journal-title":"J. Chemom."},{"key":"10.1016\/j.compag.2018.11.033_b0115","series-title":"2007 IEEE International Symposium on Signal Processing and Information Technology","first-page":"11","article-title":"A leaf recognition algorithm for plant classification using probabilistic neural network","author":"Wu","year":"2007"},{"issue":"11","key":"10.1016\/j.compag.2018.11.033_b0120","doi-asserted-by":"crossref","first-page":"10656","DOI":"10.1364\/OE.19.010656","article-title":"Type-2 fuzzy thresholding using glsc histogram of human visual nonlinearity characteristics","volume":"19","author":"Xiao","year":"2011","journal-title":"Opt. Express"},{"key":"10.1016\/j.compag.2018.11.033_b0125","doi-asserted-by":"crossref","first-page":"65","DOI":"10.1016\/j.agrformet.2013.02.011","article-title":"Automatic image-based detection technology for two critical growth stages of maize: emergence and three-leaf stage","volume":"174","author":"Yu","year":"2013","journal-title":"Agric. For. Meteorol."},{"issue":"1","key":"10.1016\/j.compag.2018.11.033_b0130","doi-asserted-by":"crossref","first-page":"15","DOI":"10.1186\/s13007-017-0168-4","article-title":"An image analysis pipeline for automated classification of imaging light conditions and for quantification of wheat canopy cover time series in field phenotyping","volume":"13","author":"Yu","year":"2017","journal-title":"Plant Methods"},{"key":"10.1016\/j.compag.2018.11.033_b0135","first-page":"72","article-title":"Application of computer vision technology in agricultural field","volume":"vol. 462","author":"Zhang","year":"2014"},{"issue":"1","key":"10.1016\/j.compag.2018.11.033_b0140","article-title":"Image segmentation method for cotton mite disease based on color features and area thresholding","volume":"48","author":"Zhihua","year":"2013","journal-title":"J. Theoret. Appl. Inform. Technol."}],"container-title":["Computers and Electronics in Agriculture"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169918301911?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169918301911?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,11,6]],"date-time":"2019-11-06T13:56:13Z","timestamp":1573048573000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0168169918301911"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,1]]},"references-count":28,"alternative-id":["S0168169918301911"],"URL":"https:\/\/doi.org\/10.1016\/j.compag.2018.11.033","relation":{},"ISSN":["0168-1699"],"issn-type":[{"value":"0168-1699","type":"print"}],"subject":[],"published":{"date-parts":[[2019,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A contextualized approach for segmentation of foliage in different crop species","name":"articletitle","label":"Article Title"},{"value":"Computers and Electronics in Agriculture","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compag.2018.11.033","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2018 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}