{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,18]],"date-time":"2024-07-18T05:59:42Z","timestamp":1721282382203},"reference-count":65,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/100004674","name":"Warsaw University of Life Sciences","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100004674","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Australian Commonwealth Government CRC Program"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers and Electronics in Agriculture"],"published-print":{"date-parts":[[2019,1]]},"DOI":"10.1016\/j.compag.2018.11.007","type":"journal-article","created":{"date-parts":[[2018,11,15]],"date-time":"2018-11-15T02:05:11Z","timestamp":1542247511000},"page":"1-9","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":8,"special_numbering":"C","title":["Reducing the influence of solar illumination angle when using active optical sensor derived NDVIAOS to infer fAPAR for spring wheat (Triticum aestivum L.)"],"prefix":"10.1016","volume":"156","author":[{"given":"M.M.","family":"Rahman","sequence":"first","affiliation":[]},{"given":"D.W.","family":"Lamb","sequence":"additional","affiliation":[]},{"given":"S.M.","family":"Samborski","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"3","key":"10.1016\/j.compag.2018.11.007_b0005","doi-asserted-by":"crossref","first-page":"719","DOI":"10.2135\/cropsci1999.0011183X003900030019x","article-title":"Measuring wheat senescence with a digital camera","volume":"39","author":"Adamsen","year":"1999","journal-title":"Crop Sci."},{"issue":"6","key":"10.1016\/j.compag.2018.11.007_b0010","doi-asserted-by":"crossref","first-page":"1131","DOI":"10.1080\/0143116031000116967","article-title":"Effect of sensor view angle on the assessment of agronomic traits by ground level hyper-spectral reflectance measurements in durum wheat under contrasting Mediterranean conditions","volume":"25","author":"Aparicio","year":"2004","journal-title":"Int. J. Remote Sens."},{"issue":"1","key":"10.1016\/j.compag.2018.11.007_b0015","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1016\/0034-4257(93)90031-R","article-title":"Leaf area index, intercepted photosynthetically active radiation, and spectral vegetation indices: a sensitivity analysis for regular-clumped canopies","volume":"46","author":"B\u00e9gu\u00e9","year":"1993","journal-title":"Remote Sens. Environ."},{"issue":"20","key":"10.1016\/j.compag.2018.11.007_b0020","doi-asserted-by":"crossref","first-page":"5391","DOI":"10.1080\/01431160903349057","article-title":"Spatio-temporal variability of sugarcane fields and recommendations for yield forecast using NDVI","volume":"31","author":"B\u00e9gu\u00e9","year":"2010","journal-title":"Int. J. Remote Sens."},{"key":"10.1016\/j.compag.2018.11.007_b0025","first-page":"3","article-title":"Better analysis of hyperspectral images by correcting reflectance anisotropy","author":"Ben-Dor","year":"2010","journal-title":"SPIE Newsroom"},{"key":"10.1016\/j.compag.2018.11.007_b0030","unstructured":"BoM. (2017). Bureau of Meteorology \u2013 Climate Statistics for Australian locations. Available online: http:\/\/www.bom.gov.au\/climate\/averages\/tables\/cw_056037_All.shtml (accessed on 20 May 2017)."},{"issue":"4","key":"10.1016\/j.compag.2018.11.007_b0035","doi-asserted-by":"crossref","first-page":"317","DOI":"10.1016\/0168-1923(86)90010-9","article-title":"Extinction coefficients for radiation in plant canopies calculated using an ellipsoidal inclination angle distribution","volume":"36","author":"Campbell","year":"1986","journal-title":"Agric. For. Meteorol."},{"key":"10.1016\/j.compag.2018.11.007_b0040","doi-asserted-by":"crossref","first-page":"270","DOI":"10.1016\/j.rse.2015.03.027","article-title":"Continuous and long-term measurements of reflectance and sun-induced chlorophyll fluorescence by using novel automated field spectroscopy systems","volume":"164","author":"Cogliati","year":"2015","journal-title":"Remote Sens. Environ."},{"issue":"2","key":"10.1016\/j.compag.2018.11.007_b0045","doi-asserted-by":"crossref","first-page":"141","DOI":"10.1016\/0034-4257(92)90132-4","article-title":"Spectral estimates of absorbed radiation and phytomass production in corn and soybean canopies","volume":"39","author":"Daughtry","year":"1992","journal-title":"Remote Sens. Environ."},{"issue":"23","key":"10.1016\/j.compag.2018.11.007_b0050","doi-asserted-by":"crossref","first-page":"5415","DOI":"10.1080\/01431160412331269724","article-title":"Effect of senescent leaves on NDVI-based estimates of fAPAR: experimental and modelling evidences","volume":"25","author":"Di Bella","year":"2004","journal-title":"Int. J. Remote Sens."},{"issue":"6\u20137","key":"10.1016\/j.compag.2018.11.007_b0055","doi-asserted-by":"crossref","first-page":"1251","DOI":"10.1080\/014311600210164","article-title":"Improvements in the global biospheric record from the Advanced Very High Resolution Radiometer (AVHRR)","volume":"21","author":"El Saleous","year":"2000","journal-title":"Int. J. Remote Sens."},{"issue":"3","key":"10.1016\/j.compag.2018.11.007_b0060","doi-asserted-by":"crossref","first-page":"351","DOI":"10.1016\/0034-4257(94)00110-9","article-title":"Dependence of NDVI and SAVI on sun\/sensor geometry and its effect on fAPAR relationships in Alfalfa","volume":"51","author":"Epiphanio","year":"1995","journal-title":"Remote Sens. Environ."},{"issue":"1","key":"10.1016\/j.compag.2018.11.007_b0065","doi-asserted-by":"crossref","first-page":"49","DOI":"10.1080\/01431160902882520","article-title":"Correction of reflectance anisotropy: a multi-sensor approach","volume":"31","author":"Feingersh","year":"2010","journal-title":"Int. J. Remote Sens."},{"issue":"3\u20134","key":"10.1016\/j.compag.2018.11.007_b0070","doi-asserted-by":"crossref","first-page":"490","DOI":"10.1016\/j.rse.2004.04.009","article-title":"Evaluation of MODIS LAI, fAPAR and the relation between fAPAR and NDVI in a semi-arid environment using in situ measurements","volume":"91","author":"Fensholt","year":"2004","journal-title":"Remote Sens. Environ."},{"issue":"3","key":"10.1016\/j.compag.2018.11.007_b0075","doi-asserted-by":"crossref","first-page":"221","DOI":"10.1016\/0034-4257(85)90096-3","article-title":"Spectral estimation of absorbed photosynthetically active radiation in corn canopies","volume":"17","author":"Gallo","year":"1985","journal-title":"Remote Sens. Environ."},{"issue":"8","key":"10.1016\/j.compag.2018.11.007_b0080","doi-asserted-by":"crossref","first-page":"1193","DOI":"10.1016\/j.agrformet.2008.02.014","article-title":"Intercomparison and sensitivity analysis of Leaf Area Index retrievals from LAI-2000, AccuPAR, and digital hemispherical photography over croplands","volume":"148","author":"Garrigues","year":"2008","journal-title":"Agric. For. Meteorol."},{"issue":"3","key":"10.1016\/j.compag.2018.11.007_b0085","doi-asserted-by":"crossref","first-page":"271","DOI":"10.1078\/0176-1617-00887","article-title":"Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves","volume":"160","author":"Gitelson","year":"2003","journal-title":"J. Plant Physiol."},{"key":"10.1016\/j.compag.2018.11.007_b0090","doi-asserted-by":"crossref","first-page":"65","DOI":"10.1016\/j.rse.2014.01.004","article-title":"Relationships between gross primary production, green LAI, and canopy chlorophyll content in maize: implications for remote sensing of primary production","volume":"144","author":"Gitelson","year":"2014","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.compag.2018.11.007_b0095","doi-asserted-by":"crossref","first-page":"108","DOI":"10.1016\/j.rse.2014.02.014","article-title":"Relationship between fraction of radiation absorbed by photosynthesizing maize and soybean canopies and NDVI from remotely sensed data taken at close range and from MODIS 250 m resolution data","volume":"147","author":"Gitelson","year":"2014","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.compag.2018.11.007_b0100","series-title":"Paper Presented at the 10th European Conference on Precision Agriculture, ECPA 2015","article-title":"Proximal nitrogen sensing by off-nadir and nadir measurements in winter wheat canopy","author":"Gnyp","year":"2015"},{"issue":"10","key":"10.1016\/j.compag.2018.11.007_b0105","doi-asserted-by":"crossref","first-page":"2196","DOI":"10.1016\/j.asr.2003.07.079","article-title":"Monitoring the photosynthetic activity of vegetation from remote sensing data","volume":"38","author":"Gobron","year":"2006","journal-title":"Adv. Space Res."},{"issue":"2","key":"10.1016\/j.compag.2018.11.007_b0110","doi-asserted-by":"crossref","first-page":"119","DOI":"10.1016\/0034-4257(92)90131-3","article-title":"Vegetation canopy PAR absorptance and the normalized difference vegetation index: an assessment using the SAIL model","volume":"39","author":"Goward","year":"1992","journal-title":"Remote Sens. Environ."},{"issue":"s1","key":"10.1016\/j.compag.2018.11.007_b0115","doi-asserted-by":"crossref","first-page":"37","DOI":"10.1111\/j.1438-8677.2008.00114.x","article-title":"Leaf senescence and nutrient remobilisation in barley and wheat","volume":"10","author":"Gregersen","year":"2008","journal-title":"Plant Biol."},{"key":"10.1016\/j.compag.2018.11.007_b0120","series-title":"Applications of Remote Sensing in Agriculture","first-page":"19","article-title":"Optical properties of vegetation canopies","author":"Guyot","year":"1990"},{"issue":"3\u20134","key":"10.1016\/j.compag.2018.11.007_b0125","doi-asserted-by":"crossref","first-page":"259","DOI":"10.1016\/0168-1923(95)02229-Q","article-title":"Estimation of absorbed photosynthetically active radiation and vegetation net production efficiency using satellite data","volume":"76","author":"Hanan","year":"1995","journal-title":"Agric. For. Meteorol."},{"key":"10.1016\/j.compag.2018.11.007_b0130","doi-asserted-by":"crossref","first-page":"28","DOI":"10.1016\/j.agrformet.2013.01.003","article-title":"Development of a two-leaf light use efficiency model for improving the calculation of terrestrial gross primary productivity","volume":"173","author":"He","year":"2013","journal-title":"Agric. For. Meteorol."},{"issue":"3","key":"10.1016\/j.compag.2018.11.007_b0135","doi-asserted-by":"crossref","first-page":"115","DOI":"10.1007\/s11119-008-9055-3","article-title":"Prospects and results for optical systems for site-specific on-the-go control of nitrogen-top-dressing in Germany","volume":"9","author":"Heege","year":"2008","journal-title":"Precis. Agric."},{"issue":"2\u20133","key":"10.1016\/j.compag.2018.11.007_b0140","doi-asserted-by":"crossref","first-page":"411","DOI":"10.1016\/j.scitotenv.2007.11.007","article-title":"The use of remote sensing in light use efficiency based models of gross primary production: a review of current status and future requirements","volume":"404","author":"Hilker","year":"2008","journal-title":"Sci. Total Environ."},{"issue":"3","key":"10.1016\/j.compag.2018.11.007_b0145","doi-asserted-by":"crossref","first-page":"253","DOI":"10.1016\/0002-1571(83)90030-4","article-title":"Assessing the interception of photosynthetically active radiation in winter wheat","volume":"28","author":"Hipps","year":"1983","journal-title":"Agric. Meteorol."},{"issue":"6","key":"10.1016\/j.compag.2018.11.007_b0150","doi-asserted-by":"crossref","first-page":"1793","DOI":"10.1109\/JSTARS.2012.2198049","article-title":"Radiometry of proximal active optical sensors (AOS) for agricultural sensing","volume":"5","author":"Holland","year":"2012","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"10.1016\/j.compag.2018.11.007_b0155","series-title":"Paper Presented at the 7th International Conference on Precision Agriculture and other Precision Resources Management","article-title":"Plant canopy sensor with modulated polychromatic light source","author":"Holland","year":"2004"},{"issue":"3\u20134","key":"10.1016\/j.compag.2018.11.007_b0160","doi-asserted-by":"crossref","first-page":"157","DOI":"10.1016\/j.agrformet.2003.09.013","article-title":"Comparison and sensitivity analysis of instruments and radiometric methods for LAI estimation: assessments from a boreal forest site","volume":"122","author":"Hyer","year":"2004","journal-title":"Agric. For. Meteorol."},{"key":"10.1016\/j.compag.2018.11.007_b0165","volume":"vol. 4","author":"Isbell","year":"2002"},{"issue":"10","key":"10.1016\/j.compag.2018.11.007_b0170","doi-asserted-by":"crossref","first-page":"14079","DOI":"10.3390\/rs71014079","article-title":"The impact of sunlight conditions on the consistency of vegetation indices in croplands\u2014effective usage of vegetation indices from continuous ground-based spectral measurements","volume":"7","author":"Ishihara","year":"2015","journal-title":"Remote Sens."},{"issue":"6","key":"10.1016\/j.compag.2018.11.007_b0175","doi-asserted-by":"crossref","first-page":"2584","DOI":"10.1109\/36.885205","article-title":"Effect of orbital drift and sensor changes on the time series of AVHRR vegetation index data","volume":"38","author":"Kaufmann","year":"2000","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"7","key":"10.1016\/j.compag.2018.11.007_b0180","doi-asserted-by":"crossref","first-page":"39","DOI":"10.5194\/isprsarchives-XL-7-W3-39-2015","article-title":"Comparison of biophysical and satellite predictors for wheat yield forecasting in Ukraine","volume":"40","author":"Kolotii","year":"2015","journal-title":"Int. Archiv. Photogramm. Remote Sens. Spatial Inform. Sci."},{"issue":"1","key":"10.1016\/j.compag.2018.11.007_b0185","doi-asserted-by":"crossref","first-page":"69","DOI":"10.1016\/j.compag.2011.03.009","article-title":"Extended-altitude, aerial mapping of crop NDVI using an active optical sensor: a case study using a Raptor\u2122 sensor over wheat","volume":"77","author":"Lamb","year":"2011","journal-title":"Comput. Electron. Agric."},{"issue":"18","key":"10.1016\/j.compag.2018.11.007_b0190","doi-asserted-by":"crossref","first-page":"3619","DOI":"10.1080\/01431160110114529","article-title":"Estimating leaf nitrogen concentration in ryegrass (Lolium spp.) pasture using the chlorophyll red-edge: theoretical modelling and experimental observations","volume":"23","author":"Lamb","year":"2002","journal-title":"Int. J. Remote Sens."},{"issue":"6","key":"10.1016\/j.compag.2018.11.007_b0195","doi-asserted-by":"crossref","first-page":"1167","DOI":"10.1016\/j.rse.2010.01.004","article-title":"Estimating crop stresses, aboveground dry biomass and yield of corn using multi-temporal optical data combined with a radiation use efficiency model","volume":"114","author":"Liu","year":"2010","journal-title":"Remote Sens. Environ."},{"issue":"4","key":"10.1016\/j.compag.2018.11.007_b0200","doi-asserted-by":"crossref","first-page":"400","DOI":"10.1016\/j.rse.2005.08.017","article-title":"A method to convert AVHRR Normalized Difference Vegetation Index time series to a standard viewing and illumination geometry","volume":"99","author":"Los","year":"2005","journal-title":"Remote Sens. Environ."},{"issue":"3","key":"10.1016\/j.compag.2018.11.007_b0205","doi-asserted-by":"crossref","first-page":"192","DOI":"10.1016\/S0034-4257(95)00098-4","article-title":"A new approach for remote sensing of canopy absorbed photosynthetically active radiation. II: proportion of canopy absorption","volume":"55","author":"Moreau","year":"1996","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.compag.2018.11.007_b0210","series-title":"Paper Presented at the 2013 IEEE International Geoscience and Remote Sensing Symposium \u2013 IGARSS","article-title":"Ground truthing protocols for biomass estimation in rangeland environments","author":"Mundava","year":"2013"},{"issue":"3","key":"10.1016\/j.compag.2018.11.007_b0215","doi-asserted-by":"crossref","first-page":"390","DOI":"10.1016\/0034-4257(94)90106-6","article-title":"Atmospheric effects and spectral vegetation indices","volume":"47","author":"Myneni","year":"1994","journal-title":"Remote Sens. Environ."},{"issue":"1?2","key":"10.1016\/j.compag.2018.11.007_b0220","doi-asserted-by":"crossref","first-page":"214","DOI":"10.1016\/S0034-4257(02)00074-3","article-title":"Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data","volume":"83","author":"Myneni","year":"2002","journal-title":"Remote Sens. Environ."},{"issue":"3","key":"10.1016\/j.compag.2018.11.007_b0225","doi-asserted-by":"crossref","first-page":"200","DOI":"10.1016\/0034-4257(94)90016-7","article-title":"On the relationship between FAPAR and NDVI","volume":"49","author":"Myneni","year":"1994","journal-title":"Remote Sens. Environ."},{"issue":"7","key":"10.1016\/j.compag.2018.11.007_b0230","doi-asserted-by":"crossref","first-page":"6680","DOI":"10.3390\/rs6076680","article-title":"Quantification of impact of orbital drift on inter-annual trends in AVHRR NDVI data","volume":"6","author":"Nagol","year":"2014","journal-title":"Remote Sensing"},{"issue":"1","key":"10.1016\/j.compag.2018.11.007_b0235","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1016\/0034-4257(93)90029-W","article-title":"Solar angle independence in the relationship between absorbed PAR and remotely sensed data for alfalfa","volume":"46","author":"Pinter","year":"1993","journal-title":"Remote Sens. Environ."},{"issue":"3","key":"10.1016\/j.compag.2018.11.007_b0240","doi-asserted-by":"crossref","first-page":"164","DOI":"10.1016\/0034-4257(95)00083-D","article-title":"Effects of orbital drift on advanced very high resolution radiometer products: normalized difference vegetation index and sea surface temperature","volume":"53","author":"Privette","year":"1995","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.compag.2018.11.007_b0245","series-title":"R: A Language and Environment for Statistical Computing","author":"R Development Core Team","year":"2016"},{"key":"10.1016\/j.compag.2018.11.007_b0250","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1016\/j.compag.2015.11.020","article-title":"Trigonometric correction factors renders the fAPAR\u2013NDVI relationship from active optical reflectance sensors insensitive to solar elevation angle","volume":"121","author":"Rahman","year":"2016","journal-title":"Comput. Electron. Agric."},{"issue":"11","key":"10.1016\/j.compag.2018.11.007_b0255","doi-asserted-by":"crossref","first-page":"3219","DOI":"10.1080\/01431161.2017.1292069","article-title":"The role of directional LAI in determining the fAPAR\u2013NDVI relationship when using active optical sensors in tall fescue (Festuca arundinacea) pasture","volume":"38","author":"Rahman","year":"2017","journal-title":"Int. J. Remote Sens."},{"key":"10.1016\/j.compag.2018.11.007_b0260","doi-asserted-by":"crossref","first-page":"39","DOI":"10.1016\/j.agrformet.2014.12.001","article-title":"The impact of solar illumination angle when using active optical sensing of NDVI to infer fAPAR in a pasture canopy","volume":"202","author":"Rahman","year":"2015","journal-title":"Agric. For. Meteorol."},{"issue":"5","key":"10.1016\/j.compag.2018.11.007_b0265","doi-asserted-by":"crossref","first-page":"532","DOI":"10.1007\/s11119-014-9349-6","article-title":"Methodology for measuring fAPAR in crops using a combination of active optical and linear irradiance sensors: a case study in Triticale (X Triticosecale Wittmack)","volume":"15","author":"Rahman","year":"2014","journal-title":"Precis. Agric."},{"issue":"3","key":"10.1016\/j.compag.2018.11.007_b0270","doi-asserted-by":"crossref","first-page":"375","DOI":"10.1016\/0034-4257(94)00114-3","article-title":"Estimating PAR absorbed by vegetation from bidirectional reflectance measurements","volume":"51","author":"Roujean","year":"1995","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.compag.2018.11.007_b0275","series-title":"Proceedings of the Third Earth Resources Technology Satellite- 1 Symposium","first-page":"301","article-title":"Monitoring vegetation systems in the Great Plains with ERTS","author":"Rouse","year":"1974"},{"issue":"D3","key":"10.1016\/j.compag.2018.11.007_b0280","doi-asserted-by":"crossref","first-page":"5263","DOI":"10.1029\/93JD03221","article-title":"Methodology for the estimation of terrestrial net primary production from remotely sensed data","volume":"99","author":"Ruimy","year":"1994","journal-title":"J. Geophys. Res.: Atmosph."},{"issue":"7","key":"10.1016\/j.compag.2018.11.007_b0285","doi-asserted-by":"crossref","first-page":"671","DOI":"10.1038\/nmeth.2089","article-title":"NIH Image to ImageJ: 25 years of image analysis","volume":"9","author":"Schneider","year":"2012","journal-title":"Nat. Meth."},{"issue":"11","key":"10.1016\/j.compag.2018.11.007_b0290","doi-asserted-by":"crossref","first-page":"2765","DOI":"10.1890\/0012-9658(2006)87[2765:MTEOPV]2.0.CO;2","article-title":"Modeling the effect of photosynthetic vegetation properties on the NDVI\u2013LAI relationship","volume":"87","author":"Steltzer","year":"2006","journal-title":"Ecology"},{"issue":"2","key":"10.1016\/j.compag.2018.11.007_b0295","doi-asserted-by":"crossref","first-page":"441","DOI":"10.1111\/j.1744-7348.1987.tb03275.x","article-title":"The decimal code for the growth stages of cereals, with illustrations","volume":"110","author":"Tottman","year":"1987","journal-title":"Ann. Appl. Biol."},{"issue":"5","key":"10.1016\/j.compag.2018.11.007_b0300","doi-asserted-by":"crossref","DOI":"10.2134\/agronj2011.0061","article-title":"Relationships of spectral vegetation indices with rice biomass and grain yield at different sensor view angles","volume":"103","author":"Tuba\u00f1a","year":"2011","journal-title":"Agron. J."},{"issue":"L17403","key":"10.1016\/j.compag.2018.11.007_b0305","first-page":"1","article-title":"New developments in the remote estimation of the fraction of absorbed photosynthetically active radiation in crops","volume":"32","author":"Vi\u00f1a","year":"2005","journal-title":"Geophys. Res. Lett."},{"issue":"1","key":"10.1016\/j.compag.2018.11.007_b0310","doi-asserted-by":"crossref","first-page":"162","DOI":"10.1016\/S0034-4257(96)00250-7","article-title":"Relations between directional spectral vegetation indices and leaf area and absorbed radiation in Alfalfa","volume":"61","author":"Walter-Shea","year":"1997","journal-title":"Remote Sens. Environ."},{"issue":"6","key":"10.1016\/j.compag.2018.11.007_b0315","doi-asserted-by":"crossref","first-page":"415","DOI":"10.1111\/j.1365-3180.1974.tb01084.x","article-title":"A decimal code for the growth stages of cereals","volume":"14","author":"Zadoks","year":"1974","journal-title":"Weed Res."},{"key":"10.1016\/j.compag.2018.11.007_b0320","article-title":"Remote estimation of the fraction of absorbed photosynthetically active radiation for a maize canopy in Northeast China","author":"Zhang","year":"2014","journal-title":"J. Plant Ecol."},{"issue":"4","key":"10.1016\/j.compag.2018.11.007_b0325","doi-asserted-by":"crossref","first-page":"880","DOI":"10.1016\/j.rse.2009.01.002","article-title":"Can a satellite-derived estimate of the fraction of PAR absorbed by chlorophyll (FAPARchl) improve predictions of light-use efficiency and ecosystem photosynthesis for a boreal aspen forest?","volume":"113","author":"Zhang","year":"2009","journal-title":"Remote Sens. Environ."}],"container-title":["Computers and Electronics in Agriculture"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169918304745?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169918304745?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,1,4]],"date-time":"2019-01-04T11:24:03Z","timestamp":1546601043000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0168169918304745"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,1]]},"references-count":65,"alternative-id":["S0168169918304745"],"URL":"https:\/\/doi.org\/10.1016\/j.compag.2018.11.007","relation":{},"ISSN":["0168-1699"],"issn-type":[{"value":"0168-1699","type":"print"}],"subject":[],"published":{"date-parts":[[2019,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Reducing the influence of solar illumination angle when using active optical sensor derived NDVIAOS to infer fAPAR for spring wheat (Triticum aestivum L.)","name":"articletitle","label":"Article Title"},{"value":"Computers and Electronics in Agriculture","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compag.2018.11.007","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2018 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}