{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,24]],"date-time":"2024-08-24T00:35:35Z","timestamp":1724459735547},"reference-count":30,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2018,10,1]],"date-time":"2018-10-01T00:00:00Z","timestamp":1538352000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers and Electronics in Agriculture"],"published-print":{"date-parts":[[2018,10]]},"DOI":"10.1016\/j.compag.2018.08.029","type":"journal-article","created":{"date-parts":[[2018,9,5]],"date-time":"2018-09-05T00:29:18Z","timestamp":1536107358000},"page":"334-346","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":26,"special_numbering":"C","title":["On the reliability of soft computing methods in the estimation of dew point temperature: The case of arid regions of Iran"],"prefix":"10.1016","volume":"153","author":[{"given":"Nasrin Fathollahzadeh","family":"Attar","sequence":"first","affiliation":[]},{"given":"Keivan","family":"Khalili","sequence":"additional","affiliation":[]},{"given":"Javad","family":"Behmanesh","sequence":"additional","affiliation":[]},{"given":"Neda","family":"Khanmohammadi","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compag.2018.08.029_b0005","doi-asserted-by":"crossref","DOI":"10.1016\/j.jaridenv.2005.09.004","article-title":"Dew formation and water vapor adsorption in semi-arid environments \u2013 a review","author":"Agam","year":"2006","journal-title":"J. Arid Environ."},{"key":"10.1016\/j.compag.2018.08.029_b0010","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s12665-015-5135-7","article-title":"A hybrid computational intelligence method for predicting dew point temperature","volume":"75","author":"Amirmojahedi","year":"2016","journal-title":"Environ. Earth Sci."},{"key":"10.1016\/j.compag.2018.08.029_b0015","doi-asserted-by":"crossref","first-page":"1043","DOI":"10.1016\/j.applthermaleng.2015.10.056","article-title":"Estimation of air dew point temperature using computational intelligence schemes","volume":"93","author":"Baghban","year":"2016","journal-title":"Appl. Therm. Eng."},{"key":"10.1016\/j.compag.2018.08.029_b0020","unstructured":"Cortes, Corinna, V.V., 1995. Support vector machine."},{"key":"10.1016\/j.compag.2018.08.029_b0025","first-page":"449","article-title":"Une nouvelle function climatologique: l\u2019indice d\u2019aridit\u00e9","volume":"2","author":"De Martonne","year":"1926","journal-title":"M\u00e9t\u00e9or"},{"key":"10.1016\/j.compag.2018.08.029_b0030","first-page":"438","article-title":"Computational intelligence approach for modeling hydrogen production: a review","volume":"12","author":"Faizollahzadeh Ardabili","year":"2018","journal-title":"Eng. Appl. Comput. Fluid Mech."},{"key":"10.1016\/j.compag.2018.08.029_b0035","doi-asserted-by":"crossref","first-page":"4424","DOI":"10.1002\/wrcr.20318","article-title":"Representing atmospheric moisture content along mountain slopes: examination using distributed sensors in the Sierra Nevada, California","volume":"49","author":"Feld","year":"2013","journal-title":"Water Resour. Res."},{"key":"10.1016\/j.compag.2018.08.029_b0040","doi-asserted-by":"crossref","unstructured":"Ferreira, C., 2001. Gene Expression Programming in Problem Solving. Soft Comput. Ind. \u2013 Recent Appl. 641\u2013660. https:\/\/doi.org\/10.1007\/978-1-4471-0123-9_54.","DOI":"10.1007\/978-1-4471-0123-9_54"},{"key":"10.1016\/j.compag.2018.08.029_b0045","first-page":"411","article-title":"Mechanics survey of computational intelligence as a basis to big flood management: challenges, research directions, and future work","volume":"2060","author":"Fotovatikhah","year":"2018","journal-title":"Eng. Appl. Comput. Fluid Mech."},{"key":"10.1016\/j.compag.2018.08.029_b0050","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1214\/aos\/1176347963","article-title":"Multivariate adaptive regression splines","volume":"19","author":"Friedman","year":"1991","journal-title":"Ann. Stat."},{"key":"10.1016\/j.compag.2018.08.029_b0055","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2017.05.033","article-title":"Performance investigation of the dam intake physical hydraulic model using Support Vector Machine with a discrete wavelet transform algorithm","author":"Ghazvinei","year":"2017","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2018.08.029_b0060","doi-asserted-by":"crossref","first-page":"323","DOI":"10.2134\/agronj2003.0323","article-title":"Estimating daily dew point temperature for the northern Great Plains using maximum and minimum temperature","volume":"95","author":"Hubbard","year":"2003","journal-title":"Agron. J."},{"key":"10.1016\/j.compag.2018.08.029_b0065","doi-asserted-by":"crossref","first-page":"192","DOI":"10.1504\/IJHST.2011.043284","article-title":"Prediction of meteorological variables using artificial neural networks","volume":"1","author":"Jothiprakash","year":"2011","journal-title":"Int. J. Hydrol. Sci. Technol."},{"key":"10.1016\/j.compag.2018.08.029_b0070","doi-asserted-by":"crossref","first-page":"330","DOI":"10.1016\/j.rser.2017.07.054","article-title":"Comparison of four heuristic regression techniques in solar radiation modeling: Kriging method vs RSM, MARS and M5 model tree","volume":"81","author":"Keshtegar","year":"2018","journal-title":"Renew. Sustain. Energy Rev."},{"key":"10.1016\/j.compag.2018.08.029_b0080","doi-asserted-by":"crossref","first-page":"87","DOI":"10.1016\/S0168-1923(96)02366-0","article-title":"An improved method for estimating surface humidity from daily minimum temperature","volume":"85","author":"Kimball","year":"1997","journal-title":"Agric. For. Meteorol."},{"key":"10.1016\/j.compag.2018.08.029_b0085","doi-asserted-by":"crossref","first-page":"365","DOI":"10.1007\/s00704-013-0845-9","article-title":"Estimation of dew point temperature using neuro-fuzzy and neural network techniques","volume":"114","author":"Kisi","year":"2013","journal-title":"Theor. Appl. Climatol."},{"key":"10.1016\/j.compag.2018.08.029_b0095","doi-asserted-by":"crossref","first-page":"225","DOI":"10.1175\/BAMS-86-2-225","article-title":"The relationship between relative humidity and the dewpoint temperature in moist air: a simple conversion and applications","volume":"86","author":"Lawrence","year":"2005","journal-title":"Bull. Am. Meteorol. Soc."},{"key":"10.1016\/j.compag.2018.08.029_b0100","doi-asserted-by":"crossref","first-page":"71","DOI":"10.1016\/j.agrformet.2005.02.004","article-title":"Assessing bias in evapotranspiration and soil moisture estimates due to the use of modeled solar radiation and dew point temperature data","volume":"130","author":"Mahmood","year":"2005","journal-title":"Agric. For. Meteorol."},{"key":"10.1016\/j.compag.2018.08.029_b0105","doi-asserted-by":"crossref","first-page":"114","DOI":"10.1016\/j.compag.2017.11.038","article-title":"Assessing the potential of data-driven models for estimation of long-term monthly temperatures","volume":"144","author":"Mehdizadeh","year":"2018","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2018.08.029_b0110","doi-asserted-by":"crossref","first-page":"1097","DOI":"10.1016\/j.applthermaleng.2016.10.181","article-title":"Application of gene expression programming to predict daily dew point temperature","volume":"112","author":"Mehdizadeh","year":"2017","journal-title":"Appl. Therm. Eng."},{"key":"10.1016\/j.compag.2018.08.029_b0115","doi-asserted-by":"crossref","first-page":"103","DOI":"10.1016\/j.compag.2017.05.002","article-title":"Using MARS, SVM, GEP and empirical equations for estimation of monthly mean reference evapotranspiration","volume":"139","author":"Mehdizadeh","year":"2017","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2018.08.029_b0120","doi-asserted-by":"crossref","first-page":"214","DOI":"10.1016\/j.compag.2015.08.008","article-title":"Extreme learning machine based prediction of daily dew point temperature","volume":"117","author":"Mohammadi","year":"2015","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2018.08.029_b0125","doi-asserted-by":"crossref","first-page":"311","DOI":"10.1016\/j.applthermaleng.2015.11.081","article-title":"Using ANFIS for selection of more relevant parameters to predict dew point temperature","volume":"96","author":"Mohammadi","year":"2016","journal-title":"Appl. Therm. Eng."},{"key":"10.1016\/j.compag.2018.08.029_b9000","doi-asserted-by":"crossref","first-page":"372","DOI":"10.1016\/j.asoc.2014.02.002","article-title":"Support vector machine applications in the field of hydrology: a review","volume":"19","author":"Raghavendra","year":"2014","journal-title":"Appl. Soft Comput. J."},{"key":"10.1016\/j.compag.2018.08.029_b0135","doi-asserted-by":"crossref","first-page":"523","DOI":"10.1080\/08839510802226785","article-title":"Ensemble artificial neural networks for prediction of dew point temperature","volume":"22","author":"Shank","year":"2008","journal-title":"Appl. Artif. Intell."},{"key":"10.1016\/j.compag.2018.08.029_b0140","doi-asserted-by":"crossref","first-page":"131","DOI":"10.1016\/j.jastp.2016.10.008","article-title":"Estimation of daily global solar radiation using wavelet regression, ANN, GEP and empirical models: A comparative study of selected temperature-based approaches","volume":"149","author":"Sharifi","year":"2016","journal-title":"J. Atmos. Solar-Terrestrial Phys."},{"key":"10.1016\/j.compag.2018.08.029_b0145","article-title":"Estimation of daily dew point temperature using genetic programming and neural networks approaches","volume":"165\u2013181","author":"Shiri","year":"2013","journal-title":"Hydrol. Res."},{"key":"10.1016\/j.compag.2018.08.029_b0150","doi-asserted-by":"crossref","first-page":"165","DOI":"10.2166\/nh.2013.229","article-title":"Estimation of daily dew point temperature using genetic programming and neural networks approaches","volume":"45","author":"Shiri","year":"2014","journal-title":"Hydrol. Res."},{"key":"10.1016\/j.compag.2018.08.029_b0155","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1061\/(ASCE)IR.1943-4774.0001225","article-title":"Estimation of relative humidity and dew point temperature using limited meteorological data","volume":"143","author":"Upreti","year":"2017","journal-title":"J. Irrig. Drain. Eng."},{"key":"10.1016\/j.compag.2018.08.029_b0160","doi-asserted-by":"crossref","first-page":"692","DOI":"10.1016\/j.applthermaleng.2009.11.017","article-title":"A multi-layer feed forward neural network model for accurate prediction of flue gas sulfuric acid dew points in process industries","volume":"30","author":"ZareNezhad","year":"2010","journal-title":"Appl. Therm. Eng."}],"container-title":["Computers and Electronics in Agriculture"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169918303727?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169918303727?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2020,4,28]],"date-time":"2020-04-28T09:43:26Z","timestamp":1588067006000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0168169918303727"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,10]]},"references-count":30,"alternative-id":["S0168169918303727"],"URL":"https:\/\/doi.org\/10.1016\/j.compag.2018.08.029","relation":{},"ISSN":["0168-1699"],"issn-type":[{"value":"0168-1699","type":"print"}],"subject":[],"published":{"date-parts":[[2018,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"On the reliability of soft computing methods in the estimation of dew point temperature: The case of arid regions of Iran","name":"articletitle","label":"Article Title"},{"value":"Computers and Electronics in Agriculture","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compag.2018.08.029","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2018 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}