{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T06:44:24Z","timestamp":1726469064117},"reference-count":38,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2018,10,1]],"date-time":"2018-10-01T00:00:00Z","timestamp":1538352000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"name":"programs at the Ohio State University- the Field to Faucet program","award":["F2F-000004"]},{"name":"Ohio Agricultural Research and Development Center"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers and Electronics in Agriculture"],"published-print":{"date-parts":[[2018,10]]},"DOI":"10.1016\/j.compag.2018.07.016","type":"journal-article","created":{"date-parts":[[2018,8,23]],"date-time":"2018-08-23T04:18:00Z","timestamp":1534997880000},"page":"213-225","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":194,"special_numbering":"C","title":["Integration of high resolution remotely sensed data and machine learning techniques for spatial prediction of soil properties and corn yield"],"prefix":"10.1016","volume":"153","author":[{"given":"Sami","family":"Khanal","sequence":"first","affiliation":[]},{"given":"John","family":"Fulton","sequence":"additional","affiliation":[]},{"given":"Andrew","family":"Klopfenstein","sequence":"additional","affiliation":[]},{"given":"Nathan","family":"Douridas","sequence":"additional","affiliation":[]},{"given":"Scott","family":"Shearer","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compag.2018.07.016_b0005","doi-asserted-by":"crossref","first-page":"695","DOI":"10.1071\/SR13041","article-title":"What determines soil organic carbon stocks in the grazing lands of north-eastern Australia?","volume":"51","author":"Allen","year":"2014","journal-title":"Soil Res."},{"key":"10.1016\/j.compag.2018.07.016_b0010","doi-asserted-by":"crossref","first-page":"731","DOI":"10.13031\/2013.5370","article-title":"Multispectral data for mapping soil texture: possibilities and limitations","volume":"16","author":"Barnes","year":"2000","journal-title":"Appl. Eng. Agric."},{"key":"10.1016\/j.compag.2018.07.016_b0015","doi-asserted-by":"crossref","first-page":"11125","DOI":"10.3390\/rs70911125","article-title":"Organic matter modeling at the landscape scale based on multitemporal soil pattern analysis using rapideye data","volume":"7","author":"Blasch","year":"2015","journal-title":"Remote Sens."},{"key":"10.1016\/j.compag.2018.07.016_b0020","doi-asserted-by":"crossref","first-page":"631","DOI":"10.1071\/SR12353","article-title":"Variations in soil organic carbon for two soil types and six land uses in the Murray Catchment, New South Wales, Australia","volume":"51","author":"Davy","year":"2014","journal-title":"Soil Res."},{"key":"10.1016\/j.compag.2018.07.016_b0025","doi-asserted-by":"crossref","first-page":"30","DOI":"10.1016\/S0303-2434(01)85019-4","article-title":"A regional scale soil mapping approach using integrated AVHRR and DEM data","volume":"3","author":"Dobos","year":"2001","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"10.1016\/j.compag.2018.07.016_b0030","first-page":"709","article-title":"Soil optical properties and environmental applications of remote sensing","volume":"29","author":"Escadafal","year":"1993","journal-title":"Int. Arch. Photogramm. Remote Sens."},{"key":"10.1016\/j.compag.2018.07.016_b0035","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1371\/journal.pone.0170478","article-title":"High resolution mapping of soil properties using Remote Sensing variables in south-western Burkina Faso: a comparison of machine learning and multiple linear regression models","volume":"12","author":"Forkuor","year":"2017","journal-title":"PLoS One"},{"key":"10.1016\/j.compag.2018.07.016_b0040","doi-asserted-by":"crossref","first-page":"10335","DOI":"10.3390\/rs61110335","article-title":"Combined spectral and spatial modeling of corn yield based on aerial images and crop surface models acquired with an unmanned aircraft system","volume":"6","author":"Geipel","year":"2014","journal-title":"Remote Sens."},{"key":"10.1016\/j.compag.2018.07.016_b0045","doi-asserted-by":"crossref","first-page":"115","DOI":"10.5194\/npg-15-115-2008","article-title":"Estimation of soil types by non linear analysis of remote sensing data","volume":"15","author":"Hahn","year":"2008","journal-title":"Nonlinear Process. Geophys."},{"key":"10.1016\/j.compag.2018.07.016_b0050","doi-asserted-by":"crossref","DOI":"10.1155\/2011\/358193","article-title":"Use of airborne hyperspectral imagery to map soil properties in tilled agricultural fields","author":"Hively","year":"2011","journal-title":"Appl. Environ. Soil Sci."},{"key":"10.1016\/j.compag.2018.07.016_b0055","doi-asserted-by":"crossref","first-page":"1223","DOI":"10.1080\/01431169108929723","article-title":"Investigation of soil influences in AVHRR red and near-infrared vegetation index imagery","volume":"12","author":"Huete","year":"1991","journal-title":"Int. J. Remote Sens."},{"key":"10.1016\/j.compag.2018.07.016_b0060","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1371\/journal.pone.0156571","article-title":"Random forests for global and regional crop yield predictions","volume":"11","author":"Jeong","year":"2016","journal-title":"PLoS One"},{"key":"10.1016\/j.compag.2018.07.016_b0065","first-page":"128","article-title":"Inferences on potential seamount locations from mid-resolution bathymetric data","volume":"32","author":"Kitchingman","year":"2004","journal-title":"Focus (Madison)."},{"key":"10.1016\/j.compag.2018.07.016_b0070","unstructured":"Kuhn, M., 2017. CARET: Classification and Regression Training [WWW Document]. URL (accessed 10.1.17)."},{"key":"10.1016\/j.compag.2018.07.016_b0075","unstructured":"Kuhn, M., Johnson, K., 2013. Applied Predictive Modeling. ."},{"key":"10.1016\/j.compag.2018.07.016_b0080","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0153673","article-title":"Improving the spatial prediction of soil organic carbon stocks in a complex tropical mountain landscape by methodological specifications in machine learning approaches","volume":"11","author":"Lie\u00df","year":"2016","journal-title":"PLoS One"},{"key":"10.1016\/j.compag.2018.07.016_b0085","doi-asserted-by":"crossref","first-page":"324","DOI":"10.1016\/j.rse.2015.04.021","article-title":"A scalable satellite-based crop yield mapper","volume":"164","author":"Lobell","year":"2015","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.compag.2018.07.016_b0090","doi-asserted-by":"crossref","first-page":"377","DOI":"10.1007\/s11119-013-9336-3","article-title":"Post-processing methods to eliminate erroneous grain yield measurements: review and directions for future development","volume":"15","author":"Lyle","year":"2014","journal-title":"Precis. Agric."},{"key":"10.1016\/j.compag.2018.07.016_b0095","doi-asserted-by":"crossref","first-page":"72","DOI":"10.1016\/j.chemolab.2008.06.003","article-title":"Regression rules as a tool for predicting soil properties from infrared reflectance spectroscopy","volume":"94","author":"Minasny","year":"2008","journal-title":"Chemom. Intell. Lab. Syst."},{"key":"10.1016\/j.compag.2018.07.016_b0100","doi-asserted-by":"crossref","first-page":"104","DOI":"10.1016\/j.biosystemseng.2016.04.018","article-title":"Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy","volume":"152","author":"Morellos","year":"2016","journal-title":"Biosyst. Eng."},{"key":"10.1016\/j.compag.2018.07.016_b0105","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.geoderma.2010.12.018","article-title":"The use of remote sensing in soil and terrain mapping-a review","volume":"162","author":"Mulder","year":"2011","journal-title":"Geoderma"},{"key":"10.1016\/j.compag.2018.07.016_b0110","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0142295","article-title":"Modeling soil organic carbon at regional scale by combining multi-spectral images with laboratory spectra","volume":"10","author":"Peng","year":"2015","journal-title":"PLoS One"},{"key":"10.1016\/j.compag.2018.07.016_b0115","first-page":"127","article-title":"Use of high resolution remote sensing data for generating site-specific soil management plan","volume":"35","author":"Ray","year":"2004","journal-title":"Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci."},{"key":"10.1016\/j.compag.2018.07.016_b0120","unstructured":"Riedmiller, M., Braun, H., 1993. A direct adaptive method for faster backpropagation learning\u202f: the RPROP algorithm. In: Neural Networks, International Conference on. pp. 586\u2013591."},{"key":"10.1016\/j.compag.2018.07.016_b0125","first-page":"23","article-title":"Index that quantifies topographic heterogeneity","volume":"5","author":"Riley","year":"1999","journal-title":"Intermt. J. Sci."},{"key":"10.1016\/j.compag.2018.07.016_b0130","doi-asserted-by":"crossref","first-page":"46","DOI":"10.1016\/j.geoderma.2009.12.025","article-title":"Using data mining to model and interpret soil diffuse reflectance spectra","volume":"158","author":"Rossel","year":"2010","journal-title":"Geoderma"},{"key":"10.1016\/j.compag.2018.07.016_b0135","doi-asserted-by":"crossref","first-page":"82","DOI":"10.1016\/j.geodrs.2014.10.004","article-title":"Regional scale soil salinity evaluation using Landsat 7, western San Joaquin Valley, California","volume":"2","author":"Scudiero","year":"2014","journal-title":"USA. Geoderma Reg."},{"key":"10.1016\/j.compag.2018.07.016_b0140","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0159781","article-title":"Unmanned aerial vehicles for high-throughput phenotyping and agronomic research","volume":"11","author":"Shi","year":"2016","journal-title":"PLoS One"},{"key":"10.1016\/j.compag.2018.07.016_b0145","doi-asserted-by":"crossref","first-page":"531","DOI":"10.1080\/01904167.2015.1124893","article-title":"Interpolation type and data computation of crop yield maps is important for precision crop production","volume":"39","author":"Souza","year":"2016","journal-title":"J. Plant fcenNutr."},{"key":"10.1016\/j.compag.2018.07.016_b0150","unstructured":"Spectrum Analytic, 2017. Analysis Services [WWW Document]. URL ."},{"key":"10.1016\/j.compag.2018.07.016_b0155","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0066409","article-title":"Prediction of soil organic carbon at the European scale by visible and near infrared reflectance spectroscopy","volume":"8","author":"Stevens","year":"2013","journal-title":"PLoS One"},{"key":"10.1016\/j.compag.2018.07.016_b0160","doi-asserted-by":"crossref","first-page":"1471","DOI":"10.2134\/agronj2006.0326","article-title":"Yield editor: software for removing errors from crop yield maps","volume":"99","author":"Sudduth","year":"2007","journal-title":"Agron. J."},{"key":"10.1016\/j.compag.2018.07.016_b0165","doi-asserted-by":"crossref","first-page":"1445","DOI":"10.13031\/2013.7002","article-title":"Soil reflectance sensing for determining soil properties in precision agriculture","volume":"44","author":"Thomasson","year":"2001","journal-title":"Trans. ASAE"},{"key":"10.1016\/j.compag.2018.07.016_b0170","doi-asserted-by":"crossref","first-page":"149","DOI":"10.1016\/j.compag.2004.11.014","article-title":"Artificial neural networks to predict corn yield from Compact Airborne funoSpectrographic Imager data","volume":"47","author":"Uno","year":"2005","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2018.07.016_b0175","doi-asserted-by":"crossref","first-page":"394","DOI":"10.1016\/j.ecolind.2014.12.028","article-title":"A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape","volume":"52","author":"Were","year":"2015","journal-title":"Ecol. Indic."},{"key":"10.1016\/j.compag.2018.07.016_b0180","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1080\/01490410701295962","article-title":"Multiscale terrain analysis of multibeam bathymetry data for habitat mapping on the continental slope","volume":"30","author":"Wilson","year":"2007","journal-title":"Mar. Geod."},{"key":"10.1016\/j.compag.2018.07.016_b0185","doi-asserted-by":"crossref","first-page":"5257","DOI":"10.3390\/rs6065257","article-title":"An airborne multispectral imaging system based on two consumer-grade cameras for agricultural remote sensing","volume":"6","author":"Yang","year":"2014","journal-title":"Remote Sens."},{"key":"10.1016\/j.compag.2018.07.016_b0190","doi-asserted-by":"crossref","first-page":"2462","DOI":"10.2134\/agronj2016.01.0004","article-title":"Characterizing spatial-temporal changes of soil and crop parameters for precision management in a coastal rainfed agroecosystem","volume":"108","author":"Yao","year":"2016","journal-title":"Agron. J."}],"container-title":["Computers and Electronics in Agriculture"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169918300334?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169918300334?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2020,4,28]],"date-time":"2020-04-28T13:39:54Z","timestamp":1588081194000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0168169918300334"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,10]]},"references-count":38,"alternative-id":["S0168169918300334"],"URL":"https:\/\/doi.org\/10.1016\/j.compag.2018.07.016","relation":{},"ISSN":["0168-1699"],"issn-type":[{"type":"print","value":"0168-1699"}],"subject":[],"published":{"date-parts":[[2018,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Integration of high resolution remotely sensed data and machine learning techniques for spatial prediction of soil properties and corn yield","name":"articletitle","label":"Article Title"},{"value":"Computers and Electronics in Agriculture","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compag.2018.07.016","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2018 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}