{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,15]],"date-time":"2024-09-15T16:48:26Z","timestamp":1726418906902},"reference-count":42,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2018,9,1]],"date-time":"2018-09-01T00:00:00Z","timestamp":1535760000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["41671415","41601461"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Zhejiang Public Welfare Programme of Agriculture Technology","award":["2016C32087"]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers and Electronics in Agriculture"],"published-print":{"date-parts":[[2018,9]]},"DOI":"10.1016\/j.compag.2018.07.002","type":"journal-article","created":{"date-parts":[[2018,7,11]],"date-time":"2018-07-11T03:18:11Z","timestamp":1531279091000},"page":"109-116","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":33,"special_numbering":"C","title":["Mapping wheat rust based on high spatial resolution satellite imagery"],"prefix":"10.1016","volume":"152","author":[{"given":"Dongmei","family":"Chen","sequence":"first","affiliation":[]},{"given":"Yeyin","family":"Shi","sequence":"additional","affiliation":[]},{"given":"Wenjiang","family":"Huang","sequence":"additional","affiliation":[]},{"given":"Jingcheng","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Kaihua","family":"Wu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"6","key":"10.1016\/j.compag.2018.07.002_b0005","doi-asserted-by":"crossref","first-page":"5107","DOI":"10.3390\/rs6065107","article-title":"Evaluating the effect of different wheat rust disease symptoms on vegetation indices using hyperspectral measurements","volume":"6","author":"Ashourloo","year":"2014","journal-title":"Remote Sens."},{"key":"10.1016\/j.compag.2018.07.002_b0010","series-title":"Proceedings of the Fifth Annual Workshop on Computational Learning Theory","first-page":"144","article-title":"A training algorithm for optimal margin classifiers","author":"Boser","year":"1992"},{"issue":"2","key":"10.1016\/j.compag.2018.07.002_b0015","doi-asserted-by":"crossref","first-page":"137","DOI":"10.1016\/S1537-5110(02)00269-6","article-title":"Early disease detection in wheat fields using spectral reflectance","volume":"84","author":"Bravo","year":"2003","journal-title":"Biosyst. Eng."},{"issue":"1","key":"10.1016\/j.compag.2018.07.002_b0020","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","article-title":"Random forests","volume":"45","author":"Breiman","year":"2001","journal-title":"Mach. Learn."},{"issue":"2","key":"10.1016\/j.compag.2018.07.002_b0025","doi-asserted-by":"crossref","first-page":"156","DOI":"10.1016\/S0034-4257(00)00197-8","article-title":"Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density","volume":"76","author":"Broge","year":"2001","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.compag.2018.07.002_b0030","series-title":"Encyclopedia of Data Warehousing and Mining","first-page":"1888","article-title":"A survey of feature selection techniques","author":"Chizi","year":"2009"},{"key":"10.1016\/j.compag.2018.07.002_b0035","series-title":"Encyclopedia of Data Warehousing and Mining","first-page":"2103","article-title":"Wrapper feature selection","author":"Chrysostomou","year":"2009"},{"issue":"1","key":"10.1016\/j.compag.2018.07.002_b0040","first-page":"69","article-title":"A quantitative method to test for consistency and correctness in photointerpretation","volume":"49","author":"Congalton","year":"1983","journal-title":"Photogrammetr. Eng. Remote Sens."},{"key":"10.1016\/j.compag.2018.07.002_b0045","series-title":"Encyclopedia of Data Warehousing and Mining","first-page":"878","article-title":"Feature selection","author":"Francois","year":"2009"},{"issue":"3","key":"10.1016\/j.compag.2018.07.002_b0050","doi-asserted-by":"crossref","first-page":"289","DOI":"10.1016\/S0034-4257(96)00072-7","article-title":"Use of a green channel in remote sensing of global vegetation from EOS-MODIS","volume":"58","author":"Gitelson","year":"1996","journal-title":"Remote Sens. Environ."},{"issue":"3","key":"10.1016\/j.compag.2018.07.002_b0055","doi-asserted-by":"crossref","first-page":"289","DOI":"10.1016\/S0034-4257(96)00072-7","article-title":"Use of a green channel in remote sensing of global vegetation from eos-modis","volume":"58","author":"Gitelson","year":"1997","journal-title":"Remote Sens. Environ."},{"issue":"4704","key":"10.1016\/j.compag.2018.07.002_b0060","doi-asserted-by":"crossref","first-page":"1147","DOI":"10.1126\/science.228.4704.1147","article-title":"Imaging spectrometry for earth remote sensing","volume":"228","author":"Goetz","year":"1985","journal-title":"Science"},{"issue":"3","key":"10.1016\/j.compag.2018.07.002_b0065","doi-asserted-by":"crossref","first-page":"337","DOI":"10.1016\/j.rse.2003.12.013","article-title":"Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture","volume":"90","author":"Haboudane","year":"2004","journal-title":"Remote Sens. Environ."},{"issue":"3","key":"10.1016\/j.compag.2018.07.002_b0070","doi-asserted-by":"crossref","first-page":"492","DOI":"10.1109\/TGRS.2004.842481","article-title":"Investigation of the random forest framework for classification of hyperspectral data","volume":"43","author":"Ham","year":"2005","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"1","key":"10.1016\/j.compag.2018.07.002_b0075","first-page":"192","article-title":"The elements of statistical learning","volume":"167","author":"Hastie","year":"2001","journal-title":"J. Roy. Stat. Soc."},{"issue":"4","key":"10.1016\/j.compag.2018.07.002_b0080","doi-asserted-by":"crossref","first-page":"18","DOI":"10.1109\/5254.708428","article-title":"Support vector machines","volume":"13","author":"Hearst","year":"1998","journal-title":"IEEE Intell. Syst. Appl."},{"issue":"17","key":"10.1016\/j.compag.2018.07.002_b0085","doi-asserted-by":"crossref","first-page":"4427","DOI":"10.1080\/01431160802566439","article-title":"Mapping whitebark pine mortality caused by a mountain pine beetle outbreak with high spatial resolution satellite imagery","volume":"30","author":"Hicke","year":"2009","journal-title":"Int. J. Remote Sens."},{"issue":"4\u20135","key":"10.1016\/j.compag.2018.07.002_b0090","doi-asserted-by":"crossref","first-page":"187","DOI":"10.1007\/s11119-007-9038-9","article-title":"Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging","volume":"8","author":"Huang","year":"2007","journal-title":"Precision Agric."},{"issue":"3","key":"10.1016\/j.compag.2018.07.002_b0095","doi-asserted-by":"crossref","first-page":"295","DOI":"10.1016\/0034-4257(88)90106-X","article-title":"A soil-adjusted vegetation index (SAVI)","volume":"25","author":"Huete","year":"1988","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.compag.2018.07.002_b0100","series-title":"Machine Learning: Proceedings of the Eleventh International Conference","first-page":"121","article-title":"Irrelevant features and the subset selection problem","author":"John","year":"1994"},{"issue":"11","key":"10.1016\/j.compag.2018.07.002_b0105","doi-asserted-by":"crossref","first-page":"2490","DOI":"10.1109\/36.964986","article-title":"Atmospheric correction of landsat etm+ land surface imagery. I. Methods","volume":"39","author":"Liang","year":"2001","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.compag.2018.07.002_b0110","series-title":"IGARSS 2016 \u2013 2016 IEEE International Geoscience and Remote Sensing Symposium","first-page":"6385","article-title":"Diagnosis the dust stress of wheat leaves with hyperspectral indices and random forest algorithm","author":"Liang","year":"2016"},{"issue":"3","key":"10.1016\/j.compag.2018.07.002_b0115","doi-asserted-by":"crossref","first-page":"332","DOI":"10.1007\/s11119-015-9421-x","article-title":"Using high spatial resolution satellite imagery for mapping powdery mildew at a regional scale","volume":"17","author":"Lin","year":"2016","journal-title":"Precision Agric."},{"key":"10.1016\/j.compag.2018.07.002_b0120","doi-asserted-by":"crossref","first-page":"919","DOI":"10.1016\/j.procs.2016.07.111","article-title":"A survey on feature selection","volume":"91","author":"Miao","year":"2016","journal-title":"Procedia Comput. Sci."},{"issue":"3","key":"10.1016\/j.compag.2018.07.002_b0125","doi-asserted-by":"crossref","first-page":"173","DOI":"10.1016\/j.compag.2004.04.003","article-title":"Automatic detection of yellow rust in wheat using reflectance measurements and neural networks","volume":"44","author":"Moshou","year":"2004","journal-title":"Comput. Electron. Agric."},{"issue":"2","key":"10.1016\/j.compag.2018.07.002_b0130","doi-asserted-by":"crossref","first-page":"75","DOI":"10.1016\/j.rti.2005.03.003","article-title":"Plant disease detection based on data fusion of hyper-spectral and multi-spectral fluorescence imaging using Kohonen maps","volume":"11","author":"Moshou","year":"2005","journal-title":"Real-Time Imaging"},{"issue":"2","key":"10.1016\/j.compag.2018.07.002_b0135","doi-asserted-by":"crossref","first-page":"125","DOI":"10.1016\/S1537-5110(03)00090-4","article-title":"Feature vector based analysis of hyperspectral crop reflectance data for discrimination and quantification of fungal disease severity in wheat","volume":"86","author":"Muhammed","year":"2003","journal-title":"Biosyst. Eng."},{"issue":"12","key":"10.1016\/j.compag.2018.07.002_b0140","doi-asserted-by":"crossref","first-page":"1565","DOI":"10.1038\/nbt1206-1565","article-title":"What is a support vector machine?","volume":"24","author":"Noble","year":"2006","journal-title":"Nat. Biotechnol."},{"issue":"6","key":"10.1016\/j.compag.2018.07.002_b0145","doi-asserted-by":"crossref","first-page":"2236","DOI":"10.1080\/01431161.2012.743694","article-title":"Using worldview-2 bands and indices to predict bronze bug (Thaumastocoris peregrinus) damage in plantation forests","volume":"34","author":"Oumar","year":"2013","journal-title":"Int. J. Remote Sens."},{"key":"10.1016\/j.compag.2018.07.002_b0150","first-page":"2825","article-title":"Scikit-learn: machine learning in Python","volume":"12","author":"Pedregosa","year":"2011","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.compag.2018.07.002_b0155","first-page":"212","article-title":"Sequential minimal optimization: a fast algorithm for training support vector machines","volume":"208","author":"Platt","year":"1998","journal-title":"Adv. Kernel Meth.-Support Vec. Learn."},{"key":"10.1016\/j.compag.2018.07.002_b0160","series-title":"Advances in Environmental Remote Sensing: Sensors, Algorithm, and Application","first-page":"101","article-title":"Hyperspectral remote sensing of vegetation bioparameters","author":"Pu","year":"2011"},{"year":"2014","series-title":"Using Hyperspectral Remote Sensing Identification of Wheat Take-All Based on SVM","author":"Qiao","key":"10.1016\/j.compag.2018.07.002_b0165"},{"issue":"2","key":"10.1016\/j.compag.2018.07.002_b0170","doi-asserted-by":"crossref","first-page":"119","DOI":"10.1016\/0034-4257(94)90134-1","article-title":"A modified soil adjusted vegetation index","volume":"48","author":"Qi","year":"1994","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.compag.2018.07.002_b0175","first-page":"309","article-title":"Monitoring vegetation systems in the great plains with erts","volume":"351","author":"Rouse","year":"1973","journal-title":"Nasa Special Publ."},{"issue":"2","key":"10.1016\/j.compag.2018.07.002_b0180","doi-asserted-by":"crossref","first-page":"330","DOI":"10.1016\/j.patcog.2010.08.011","article-title":"Mining data with random forests: a survey and results of new tests","volume":"44","author":"Verikas","year":"2011","journal-title":"Pattern Recogn."},{"issue":"8","key":"10.1016\/j.compag.2018.07.002_b0185","doi-asserted-by":"crossref","first-page":"896","DOI":"10.1094\/PDIS.2004.88.8.896","article-title":"Wheat stripe rust epidemic and virulence of Puccinia striiformis f. sp. tritici in China in 2002","volume":"88","author":"Wan","year":"2004","journal-title":"Plant Dis."},{"issue":"6","key":"10.1016\/j.compag.2018.07.002_b0190","doi-asserted-by":"crossref","first-page":"605","DOI":"10.1071\/AR06142","article-title":"Wheat stripe rust in China","volume":"58","author":"Wan","year":"2007","journal-title":"Crop Past. Sci."},{"key":"10.1016\/j.compag.2018.07.002_b0195","first-page":"163","article-title":"Monitoring wheat stripe rust using remote sensing technologies in China","author":"Wang","year":"2012","journal-title":"Comput. Comput. Technol. Agric. V"},{"issue":"1","key":"10.1016\/j.compag.2018.07.002_b0200","doi-asserted-by":"crossref","first-page":"13","DOI":"10.1016\/j.compag.2012.03.006","article-title":"Detecting powdery mildew of winter wheat using leaf level hyperspectral measurements","volume":"85","author":"Zhang","year":"2012","journal-title":"Comput. Electron. Agric."},{"issue":"2","key":"10.1016\/j.compag.2018.07.002_b0205","doi-asserted-by":"crossref","first-page":"335","DOI":"10.1002\/ps.4003","article-title":"Using satellite multispectral imagery for damage mapping of armyworm (Spodoptera frugiperda) in maize at a regional scale","volume":"72","author":"Zhang","year":"2015","journal-title":"Pest Manage. Sci."},{"issue":"2","key":"10.1016\/j.compag.2018.07.002_b0210","doi-asserted-by":"crossref","first-page":"335","DOI":"10.1002\/ps.4003","article-title":"Using satellite multispectral imagery for damage mapping of armyworm (Spodoptera frugiperda) in maize at a regional scale","volume":"72","author":"Zhang","year":"2016","journal-title":"Pest Manage. Sci."}],"container-title":["Computers and Electronics in Agriculture"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169917311924?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169917311924?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2020,9,24]],"date-time":"2020-09-24T14:13:35Z","timestamp":1600956815000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0168169917311924"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,9]]},"references-count":42,"alternative-id":["S0168169917311924"],"URL":"https:\/\/doi.org\/10.1016\/j.compag.2018.07.002","relation":{},"ISSN":["0168-1699"],"issn-type":[{"type":"print","value":"0168-1699"}],"subject":[],"published":{"date-parts":[[2018,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Mapping wheat rust based on high spatial resolution satellite imagery","name":"articletitle","label":"Article Title"},{"value":"Computers and Electronics in Agriculture","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compag.2018.07.002","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2018 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}