{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T16:00:16Z","timestamp":1726156816967},"reference-count":51,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2017,6,1]],"date-time":"2017-06-01T00:00:00Z","timestamp":1496275200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100005416","name":"Norges Forskningsr\u00e5d","doi-asserted-by":"publisher","award":["233709"],"id":[{"id":"10.13039\/501100005416","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers and Electronics in Agriculture"],"published-print":{"date-parts":[[2017,6]]},"DOI":"10.1016\/j.compag.2017.05.021","type":"journal-article","created":{"date-parts":[[2017,5,24]],"date-time":"2017-05-24T21:15:20Z","timestamp":1495660520000},"page":"138-152","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":14,"special_numbering":"C","title":["Robust classification approach for segmentation of blood defects in cod fillets based on deep convolutional neural networks and support vector machines and calculation of gripper vectors for robotic processing"],"prefix":"10.1016","volume":"139","author":[{"given":"Ekrem","family":"Misimi","sequence":"first","affiliation":[]},{"given":"Elling Ruud","family":"\u00d8ye","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4892-2883","authenticated-orcid":false,"given":"\u00d8ystein","family":"Sture","sequence":"additional","affiliation":[]},{"given":"John Reidar","family":"Mathiassen","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"3","key":"10.1016\/j.compag.2017.05.021_b0005","doi-asserted-by":"crossref","first-page":"E291","DOI":"10.1111\/j.1750-3841.2011.02060.x","article-title":"Quantification of gaping, bruising, and blood spots in salmon fillets using image analysis","volume":"76","author":"Balaban","year":"2011","journal-title":"J. Food Sci."},{"key":"10.1016\/j.compag.2017.05.021_b0010","series-title":"Computer Vision Technology for Food Quality Evaluation","first-page":"243","article-title":"Quality evaluation of seafoods","author":"Balaban","year":"2016"},{"key":"10.1016\/j.compag.2017.05.021_b0015","series-title":"Biological Data Mining","first-page":"223","article-title":"A user\u2019s guide to support vector machines","author":"Ben-Hur","year":"2009"},{"key":"10.1016\/j.compag.2017.05.021_b0020","first-page":"281","article-title":"Random search for hyper-parameter optimization","volume":"13","author":"Bergstra","year":"2012","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.compag.2017.05.021_b0025","series-title":"CRC Handbook of Fundamental Spectroscopic Correlation Charts","author":"Bruno","year":"2005"},{"key":"10.1016\/j.compag.2017.05.021_b0030","doi-asserted-by":"crossref","first-page":"345","DOI":"10.1016\/j.cviu.2004.08.004","article-title":"Analyzing magnetic resonance images of Iberian pork loin to predict its sensorial characteristics","volume":"98","author":"Cernadas","year":"2005","journal-title":"Comput. Vis. Image Underst."},{"key":"10.1016\/j.compag.2017.05.021_b0035","unstructured":"Chang, C.-C., Lin, C., LIBSVM: A Library for Support Vector Machines. ."},{"issue":"5","key":"10.1016\/j.compag.2017.05.021_b0040","doi-asserted-by":"crossref","first-page":"1055","DOI":"10.1109\/72.788646","article-title":"SVMs for histogram-based image classification","volume":"10","author":"Chapelle","year":"1999","journal-title":"IEEE Trans Neural Netw."},{"key":"10.1016\/j.compag.2017.05.021_b0045","series-title":"Image Processing with MATLAB: Applications in Medicine and Biology (MATLAB Examples)","author":"Demirkaya","year":"2008"},{"issue":"1","key":"10.1016\/j.compag.2017.05.021_b0050","doi-asserted-by":"crossref","first-page":"159","DOI":"10.1016\/j.jfoodeng.2013.05.024","article-title":"A feature-selection algorithm based on Support Vector Machine-Multiclass for hyperspectral visible spectral analysis","volume":"119","author":"Deng","year":"2013","journal-title":"J. Food Eng."},{"key":"10.1016\/j.compag.2017.05.021_b0055","doi-asserted-by":"crossref","first-page":"137","DOI":"10.1016\/j.jfoodeng.2004.03.011","article-title":"Pizza sauce spread classification using colour vision and support vector machines","volume":"66","author":"Du","year":"2005","journal-title":"J. Food Eng."},{"key":"10.1016\/j.compag.2017.05.021_b0060","series-title":"Pattern Classification","author":"Duda","year":"2001"},{"key":"10.1016\/j.compag.2017.05.021_b0065","doi-asserted-by":"crossref","first-page":"C50","DOI":"10.1111\/j.1750-3841.2007.00617.x","article-title":"Atlantic salmon skin and fillet color changes effected by perimortem handling stress, rigor mortis, and ice storage","volume":"73","author":"Erikson","year":"2008","journal-title":"J. Food Sci."},{"issue":"4","key":"10.1016\/j.compag.2017.05.021_b0070","doi-asserted-by":"crossref","first-page":"496","DOI":"10.1111\/j.1365-2109.2009.02338.x","article-title":"Bleeding of anaesthetized and exhausted Atlantic salmon: body cavity inspection and residual blood in pre-rigor and smoked fillets as determined by various analytical methods","volume":"41","author":"Erikson","year":"2010","journal-title":"Aquac. Res."},{"key":"10.1016\/j.compag.2017.05.021_b0075","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1177\/016173468300500106","article-title":"Breast tissue classification using diagnostic ultrasound and pattern recognition techniques: I","volume":"5","author":"Finette","year":"1983","journal-title":"Ultrason. Imag."},{"key":"10.1016\/j.compag.2017.05.021_b0080","first-page":"315","article-title":"Deep sparse rectifier neural networks","author":"Glorot","year":"2011","journal-title":"J. Mach. Learn. Res."},{"issue":"9","key":"10.1016\/j.compag.2017.05.021_b0085","doi-asserted-by":"crossref","first-page":"2391","DOI":"10.1016\/j.patcog.2013.02.009","article-title":"Exhaustive comparison of colour texture features and classification methods to discriminate cells categories in histological images of fish ovary","volume":"49","author":"Gonz\u00e1lez-Rufino","year":"2013","journal-title":"Pattern Recogn."},{"key":"10.1016\/j.compag.2017.05.021_b0090","series-title":"Deep Learning","author":"Goodfellow","year":"2016"},{"key":"10.1016\/j.compag.2017.05.021_b0095","doi-asserted-by":"crossref","first-page":"418","DOI":"10.1016\/j.compag.2016.07.003","article-title":"Deep learning for plant identification using vein morphological patterns","volume":"127","author":"Grinblat","year":"2016","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2017.05.021_b0100","unstructured":"Hinton, G., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R., 2012. Improving Neural Networks by Preventing Co-Adaptation of Feature Detectors. ."},{"key":"10.1016\/j.compag.2017.05.021_b0105","doi-asserted-by":"crossref","first-page":"291","DOI":"10.1023\/A:1012427100071","article-title":"A simple decomposition method for support vector machines","volume":"46","author":"Hsu","year":"2002","journal-title":"Mach. Learn."},{"issue":"2","key":"10.1016\/j.compag.2017.05.021_b0110","doi-asserted-by":"crossref","first-page":"415","DOI":"10.1109\/72.991427","article-title":"A comparison of methods for multiclass support vector machines","volume":"13","author":"Hsu","year":"2002","journal-title":"IEEE Trans. Neural Netw."},{"key":"10.1016\/j.compag.2017.05.021_b0115","series-title":"A Practical Guide to Support Vector Classification. Technical Report","author":"Hsu","year":"2003"},{"issue":"1\u20134","key":"10.1016\/j.compag.2017.05.021_b0120","doi-asserted-by":"crossref","first-page":"438","DOI":"10.1016\/j.neucom.2009.07.014","article-title":"ACO-based hybrid classification system with feature subset selection and model parameters optimization","volume":"73","author":"Huang","year":"2009","journal-title":"Neurocomputing"},{"issue":"5","key":"10.1016\/j.compag.2017.05.021_b0125","doi-asserted-by":"crossref","first-page":"751","DOI":"10.1016\/j.patcog.2008.09.009","article-title":"Prediction of beef eating qualities from color, marbling and wavelet surface texture features using homogenous carcass treatment","volume":"42","author":"Jackman","year":"2009","journal-title":"Pattern Recogn."},{"key":"10.1016\/j.compag.2017.05.021_b0130","unstructured":"H. Kagaya, K. Aizawa, M, Ogawa, Food detection and recognition using convolutional neural network, in: MM '14 Proceedings of the 22nd ACM International Conference on Multimedia, Orlando, Florida, USA, pp. 1085\u20131088."},{"issue":"7","key":"10.1016\/j.compag.2017.05.021_b0135","doi-asserted-by":"crossref","first-page":"1667","DOI":"10.1162\/089976603321891855","article-title":"Asymptotic behaviours for support vector machines with gaussian kernel","volume":"15","author":"Keerthi","year":"2003","journal-title":"Neural Comput."},{"issue":"11","key":"10.1016\/j.compag.2017.05.021_b0140","first-page":"1542","article-title":"Support vector machines for texture classification","volume":"22","author":"Kim","year":"2002","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.compag.2017.05.021_b0145","series-title":"Advances in Neural Information Processing Systems 25 (NIPS 2012)","article-title":"ImageNet classification with deep convolutional neural networks","author":"Krizhevsky","year":"2012"},{"key":"10.1016\/j.compag.2017.05.021_b0150","series-title":"Proceedings of ISCAS - The IEEE International Symposium on Circuits and Systems","first-page":"253","article-title":"Convolutional networks and applications in vision","author":"LeCun","year":"2010"},{"key":"10.1016\/j.compag.2017.05.021_b0155","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/nature14539","article-title":"Deep learning","volume":"521","author":"LeCun","year":"2015","journal-title":"Nature"},{"key":"10.1016\/j.compag.2017.05.021_b0160","doi-asserted-by":"crossref","first-page":"67","DOI":"10.1016\/j.cviu.2016.01.012","article-title":"A supervised extreme learning committee for food recognition","volume":"148","author":"Martinel","year":"2016","journal-title":"Comput. Vis. Image Underst."},{"key":"10.1016\/j.compag.2017.05.021_b0165","doi-asserted-by":"crossref","first-page":"285","DOI":"10.1016\/j.postharvbio.2006.04.004","article-title":"Calibrated color measurements of agricultural foods using image analysis","volume":"41","author":"Mendoza","year":"2006","journal-title":"Postharvest Biol. Technol."},{"key":"10.1016\/j.compag.2017.05.021_b0170","first-page":"209","article-title":"Advances in egg defect detection, quality assessment and automated sorting and grading","volume":"vol. 1","author":"Mertens","year":"2011"},{"issue":"1","key":"10.1016\/j.compag.2017.05.021_b0175","doi-asserted-by":"crossref","first-page":"S030","DOI":"10.1111\/j.1750-3841.2006.00241.x","article-title":"Computer vision sorting of atlantic salmon (Salmo salar) fillets according to their color level","volume":"72","author":"Misimi","year":"2007","journal-title":"J. Food Sci."},{"issue":"5","key":"10.1016\/j.compag.2017.05.021_b0180","doi-asserted-by":"crossref","first-page":"E211","DOI":"10.1111\/j.1750-3841.2008.00779.x","article-title":"Quality grading of Atlantic Salmon by computer vision","volume":"73","author":"Misimi","year":"2008","journal-title":"J. Food Sci."},{"key":"10.1016\/j.compag.2017.05.021_b0185","doi-asserted-by":"crossref","first-page":"84","DOI":"10.1016\/j.compag.2015.11.021","article-title":"Gribbot - robotic 3D vision-guided harvesting of chicken fillets","volume":"121","author":"Misimi","year":"2016","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2017.05.021_b0190","doi-asserted-by":"crossref","unstructured":"Mizushima, A., Lu, R. An image segmentation method for apple sorting and grading using support vector machine and Otsu's method. Comput. Electron. Agric. 94, 29\u201337.","DOI":"10.1016\/j.compag.2013.02.009"},{"key":"10.1016\/j.compag.2017.05.021_b0195","doi-asserted-by":"crossref","first-page":"337","DOI":"10.1016\/j.foodcont.2015.11.004","article-title":"Towards automated sorting of Atlantic cod roe, milt, and liver \u2013 spectral characterization and classification using visible and near-infrared hyperspectral imaging","volume":"62","author":"Paluchowski","year":"2016","journal-title":"Food Control"},{"issue":"8","key":"10.1016\/j.compag.2017.05.021_b0200","doi-asserted-by":"crossref","first-page":"1226","DOI":"10.1109\/TPAMI.2005.159","article-title":"Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy","volume":"27","author":"Peng","year":"2005","journal-title":"IEEE Trans. Pattern Anal. Mach. Intel."},{"issue":"1","key":"10.1016\/j.compag.2017.05.021_b0205","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1016\/S0260-8774(02)00221-2","article-title":"Novel computational tools in bakery process data analysis: a comparative study","volume":"57","author":"Rousu","year":"2003","journal-title":"J. Food Eng."},{"key":"10.1016\/j.compag.2017.05.021_b0210","doi-asserted-by":"crossref","first-page":"317","DOI":"10.1023\/A:1009752403260","article-title":"On comparing classifiers: Pitfalls to avoid and a recommended approach","volume":"1","author":"Salzberg","year":"1997","journal-title":"Data Min. Knowl. Disc."},{"issue":"4","key":"10.1016\/j.compag.2017.05.021_b0215","doi-asserted-by":"crossref","first-page":"386","DOI":"10.1016\/j.meatsci.2012.04.030","article-title":"Predicting beef tenderness using color and multispectral image texture features","volume":"92","author":"Sun","year":"2012","journal-title":"Meat Sci."},{"issue":"9","key":"10.1016\/j.compag.2017.05.021_b0220","doi-asserted-by":"crossref","first-page":"1283","DOI":"10.1021\/ed076p1283","article-title":"Determination of myoglobin stability by visible spectroscopy","volume":"76","author":"Sykes","year":"1999","journal-title":"J. Chem. Educ."},{"key":"10.1016\/j.compag.2017.05.021_b0225","series-title":"Proceedings of Computer Vision and Pattern Recognition CVPR-Conference","article-title":"Going deeper with convolutions","author":"Szegedy","year":"2015"},{"key":"10.1016\/j.compag.2017.05.021_b0230","series-title":"Pattern Recognition","author":"Theodoridis","year":"2009"},{"issue":"6","key":"10.1016\/j.compag.2017.05.021_b0235","doi-asserted-by":"crossref","first-page":"929","DOI":"10.1109\/TPAMI.2007.1046","article-title":"Toward objective evaluation of image segmentation algorithms","volume":"29","author":"Unnikrishan","year":"2007","journal-title":"IEEE Trans Pattern Anal Mach Intel."},{"key":"10.1016\/j.compag.2017.05.021_b0240","series-title":"The Nature of Statistical Learning Theory","author":"Vapnik","year":"1995"},{"key":"10.1016\/j.compag.2017.05.021_b0245","series-title":"Proceedings of the British Machine Vision Conference","first-page":"21","article-title":"Generalized RBF feature maps for efficient detection","author":"Vempati","year":"2010"},{"key":"10.1016\/j.compag.2017.05.021_b0250","doi-asserted-by":"crossref","first-page":"777","DOI":"10.1016\/j.patcog.2010.08.008","article-title":"Color image segmentation using pixel wise support vector machine classification","volume":"44","author":"Wang","year":"2011","journal-title":"Pattern Recogn."},{"key":"10.1016\/j.compag.2017.05.021_b0255","doi-asserted-by":"crossref","first-page":"341","DOI":"10.1007\/s10044-012-0302-x","article-title":"LS-SVM-based image segmentation using pixel color-texture descriptors","volume":"17","author":"Yang","year":"2014","journal-title":"Pattern Anal. Appl."}],"container-title":["Computers and Electronics in Agriculture"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169916311206?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169916311206?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,6,26]],"date-time":"2022-06-26T07:01:04Z","timestamp":1656226864000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0168169916311206"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,6]]},"references-count":51,"alternative-id":["S0168169916311206"],"URL":"https:\/\/doi.org\/10.1016\/j.compag.2017.05.021","relation":{},"ISSN":["0168-1699"],"issn-type":[{"value":"0168-1699","type":"print"}],"subject":[],"published":{"date-parts":[[2017,6]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Robust classification approach for segmentation of blood defects in cod fillets based on deep convolutional neural networks and support vector machines and calculation of gripper vectors for robotic processing","name":"articletitle","label":"Article Title"},{"value":"Computers and Electronics in Agriculture","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compag.2017.05.021","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2017 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}