{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,17]],"date-time":"2024-07-17T09:06:52Z","timestamp":1721207212743},"reference-count":32,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2017,6,1]],"date-time":"2017-06-01T00:00:00Z","timestamp":1496275200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"name":"Department of Mathematics at University of Oviedo"},{"name":"Spanish Ministry of Economy and Competitiveness","award":["AGL2015-63750-R"]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers and Electronics in Agriculture"],"published-print":{"date-parts":[[2017,6]]},"DOI":"10.1016\/j.compag.2017.05.008","type":"journal-article","created":{"date-parts":[[2017,5,20]],"date-time":"2017-05-20T06:34:23Z","timestamp":1495262063000},"page":"65-74","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":19,"special_numbering":"C","title":["Modeling pressure drop produced by different filtering media in microirrigation sand filters using the hybrid ABC-MARS-based approach, MLP neural network and M5 model tree"],"prefix":"10.1016","volume":"139","author":[{"given":"P.J.","family":"Garc\u00eda Nieto","sequence":"first","affiliation":[]},{"given":"E.","family":"Garc\u00eda-Gonzalo","sequence":"additional","affiliation":[]},{"given":"J.","family":"Bov\u00e9","sequence":"additional","affiliation":[]},{"given":"G.","family":"Arbat","sequence":"additional","affiliation":[]},{"given":"M.","family":"Duran-Ros","sequence":"additional","affiliation":[]},{"given":"J.","family":"Puig-Bargu\u00e9s","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compag.2017.05.008_b0005","doi-asserted-by":"crossref","first-page":"3798","DOI":"10.1109\/TPEL.2012.2230026","article-title":"Battery state-of-charge estimator using the MARS technique","volume":"28","author":"\u00c1lvarez Ant\u00f3n","year":"2013","journal-title":"IEEE Trans. Power Electron."},{"key":"10.1016\/j.compag.2017.05.008_b0010","doi-asserted-by":"crossref","first-page":"64","DOI":"10.1016\/j.agwat.2013.05.004","article-title":"An experimental and analytical study to analyze hydraulic behaviour of nozzle-type underdrains in porous media filters","volume":"126","author":"Arbat","year":"2013","journal-title":"Agr. Water Manage."},{"issue":"6","key":"10.1016\/j.compag.2017.05.008_b0015","doi-asserted-by":"crossref","first-page":"368","DOI":"10.1002\/ppsc.19960130607","article-title":"Calculating shape factors from particle sizing data","volume":"13","author":"Barreiros","year":"1996","journal-title":"Part. Part. Syst. Char."},{"key":"10.1016\/j.compag.2017.05.008_b0020","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1016\/j.biosystemseng.2015.07.009","article-title":"Pressure drop across sand and recycled glass media used in micro irrigation filters","volume":"137","author":"Bov\u00e9","year":"2015","journal-title":"Biosyst. Eng."},{"key":"10.1016\/j.compag.2017.05.008_b0025","doi-asserted-by":"crossref","first-page":"178","DOI":"10.1016\/j.asoc.2014.05.015","article-title":"Accurately predicting building energy performance using evolutionary multivariate adaptive regression splines","volume":"22","author":"Chen","year":"2014","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.compag.2017.05.008_b0030","series-title":"Particle Swarm Optimization","author":"Clerc","year":"2006"},{"key":"10.1016\/j.compag.2017.05.008_b0035","series-title":"Ant Colony Optimization","author":"Dorigo","year":"2004"},{"key":"10.1016\/j.compag.2017.05.008_b0040","series-title":"Theory and Practice for Water and Wastewater Treatment","author":"Droste","year":"1997"},{"key":"10.1016\/j.compag.2017.05.008_b0045","series-title":"Swarm Intelligence","author":"Eberhart","year":"2001"},{"key":"10.1016\/j.compag.2017.05.008_b0050","series-title":"Statistics","author":"Freedman","year":"2007"},{"key":"10.1016\/j.compag.2017.05.008_b0055","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1214\/aos\/1176347963","article-title":"Multivariate adaptive regression splines","volume":"19","author":"Friedman","year":"1991","journal-title":"Ann. Stat."},{"key":"10.1016\/j.compag.2017.05.008_b0060","doi-asserted-by":"crossref","first-page":"197","DOI":"10.1177\/096228029500400303","article-title":"An introduction to multivariate adaptive regression splines","volume":"4","author":"Friedman","year":"1995","journal-title":"Stat. Meth. Med. Res."},{"key":"10.1016\/j.compag.2017.05.008_b0065","series-title":"Fundamentals of Artificial Neural Networks","author":"Hassoun","year":"2003"},{"key":"10.1016\/j.compag.2017.05.008_b0070","series-title":"The Elements of Statistical Learning","author":"Hastie","year":"2003"},{"issue":"1","key":"10.1016\/j.compag.2017.05.008_b0075","first-page":"253","article-title":"Full-scale trials of recycled glass as tertiary filter medium for wastewater treatment","volume":"41","author":"Horan","year":"2007","journal-title":"Water Resour."},{"key":"10.1016\/j.compag.2017.05.008_b0080","doi-asserted-by":"crossref","first-page":"227","DOI":"10.1016\/j.asoc.2014.06.035","article-title":"A quick artificial bee colony (qABC) algorithm and its performance on optimization problems","volume":"23","author":"Karaboga","year":"2014","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.compag.2017.05.008_b0085","doi-asserted-by":"crossref","first-page":"312","DOI":"10.1016\/j.jhydrol.2015.06.052","article-title":"Pan evaporation modeling using least square support vector machine, multivariate adaptive regression splines and M5 model tree","volume":"528","author":"Kisi","year":"2015","journal-title":"J. Hydrol."},{"key":"10.1016\/j.compag.2017.05.008_b0090","unstructured":"Milborrow, S., 2014. Earth: Multivariate Adaptive Regression Spline Models, R Package, Version 3.2\u20137."},{"key":"10.1016\/j.compag.2017.05.008_b0095","series-title":"Particle Swarm Optimization: Theory, Techniques and Applications","author":"Olsson","year":"2011"},{"issue":"10","key":"10.1016\/j.compag.2017.05.008_b0100","doi-asserted-by":"crossref","first-page":"1437","DOI":"10.1002\/hyp.7266","article-title":"M5 model tree based modelling of reference evapotranspiration","volume":"23","author":"Pal","year":"2009","journal-title":"Hydrol. Process."},{"issue":"387","key":"10.1016\/j.compag.2017.05.008_b0105","doi-asserted-by":"crossref","first-page":"575","DOI":"10.1080\/01621459.1984.10478083","article-title":"Cross-validation of regression models","volume":"79","author":"Picard","year":"1984","journal-title":"J. Am. Stat. Assoc."},{"key":"10.1016\/j.compag.2017.05.008_b0110","series-title":"Proceedings of Australian Joint Conference on Artificial Intelligence","first-page":"343","article-title":"Learning with continuous classes","author":"Quinlan","year":"1992"},{"issue":"14","key":"10.1016\/j.compag.2017.05.008_b0115","doi-asserted-by":"crossref","first-page":"4815","DOI":"10.1007\/s11269-013-0440-y","article-title":"A comparison between conventional and M5 model tree methods for converting pan evaporation to reference evapotranspiration for semi-arid region","volume":"27","author":"Rahimikhoob","year":"2013","journal-title":"Water Resour. Manage."},{"key":"10.1016\/j.compag.2017.05.008_b0120","doi-asserted-by":"crossref","first-page":"199","DOI":"10.1002\/cem.1180060405","article-title":"MARS: a tutorial","volume":"6","author":"Sekulic","year":"1992","journal-title":"J. Chemometr."},{"key":"10.1016\/j.compag.2017.05.008_b0125","series-title":"Evolutionary Optimization Algorithms","author":"Simon","year":"2013"},{"issue":"6","key":"10.1016\/j.compag.2017.05.008_b0130","doi-asserted-by":"crossref","first-page":"491","DOI":"10.1061\/(ASCE)1084-0699(2004)9:6(491)","article-title":"M5 model trees and neural networks: application to flood forecasting in the upper reach of the Hual River in China","volume":"9","author":"Solomatine","year":"2004","journal-title":"J. Hydrol. Eng."},{"issue":"10","key":"10.1016\/j.compag.2017.05.008_b0135","doi-asserted-by":"crossref","first-page":"927","DOI":"10.1002\/clen.201000217","article-title":"Crushed recycled glass as a filter medium and comparison with silica sand","volume":"38","author":"Soyer","year":"2010","journal-title":"Clean-Soil Air Water"},{"key":"10.1016\/j.compag.2017.05.008_b0140","series-title":"Principles of Filtration","author":"Tien","year":"2012"},{"key":"10.1016\/j.compag.2017.05.008_b0145","doi-asserted-by":"crossref","unstructured":"Vega Yong, G., Mu\u00f1oz, E., 2013. ABCOptim: Implementation of Artificial Bee Colony (ABC) Optimization, R Package, Version 0.13.11.","DOI":"10.32614\/CRAN.package.ABCoptim"},{"issue":"13","key":"10.1016\/j.compag.2017.05.008_b0150","doi-asserted-by":"crossref","first-page":"583","DOI":"10.1016\/j.ejor.2011.02.003","article-title":"Evaluating the water sector in Italy through a two stage method using the conditional robust nonparametric frontier and multivariate adaptive regression splines","volume":"212","author":"Vidoli","year":"2011","journal-title":"Eur. J. Oper. Res."},{"issue":"1","key":"10.1016\/j.compag.2017.05.008_b0155","doi-asserted-by":"crossref","first-page":"27","DOI":"10.1016\/j.chemolab.2004.02.007","article-title":"Multivariate adaptive regression splines\u2014studies of HIV reverse transcriptase inhibitors","volume":"72","author":"Xu","year":"2004","journal-title":"Chemometr. Intell. Lab."},{"key":"10.1016\/j.compag.2017.05.008_b0160","series-title":"Swarm Intelligence and Bio-Inspired Computation: Theory and Applications","author":"Yang","year":"2013"}],"container-title":["Computers and Electronics in Agriculture"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169917302119?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169917302119?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,6,24]],"date-time":"2024-06-24T07:11:51Z","timestamp":1719213111000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0168169917302119"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,6]]},"references-count":32,"alternative-id":["S0168169917302119"],"URL":"https:\/\/doi.org\/10.1016\/j.compag.2017.05.008","relation":{},"ISSN":["0168-1699"],"issn-type":[{"value":"0168-1699","type":"print"}],"subject":[],"published":{"date-parts":[[2017,6]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Modeling pressure drop produced by different filtering media in microirrigation sand filters using the hybrid ABC-MARS-based approach, MLP neural network and M5 model tree","name":"articletitle","label":"Article Title"},{"value":"Computers and Electronics in Agriculture","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compag.2017.05.008","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2017 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}