{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,15]],"date-time":"2024-09-15T13:49:36Z","timestamp":1726408176733},"reference-count":49,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2017,6,1]],"date-time":"2017-06-01T00:00:00Z","timestamp":1496275200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100004543","name":"China Scholarship Council","doi-asserted-by":"publisher","award":["201504910261"],"id":[{"id":"10.13039\/501100004543","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004739","name":"Youth Innovation Promotion Association CAS of China","doi-asserted-by":"publisher","award":["2017089"],"id":[{"id":"10.13039\/501100004739","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Hundred Talents Program CAS of China","award":["Y6YR0700QM"]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["41301390"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"name":"National Science and Technology Major Project of China","award":["2014AA06A511"]},{"DOI":"10.13039\/501100012336","name":"Major State Basic Research Development Program of China","doi-asserted-by":"crossref","award":["2013CB733405","2010CB950603"],"id":[{"id":"10.13039\/501100012336","id-type":"DOI","asserted-by":"crossref"}]},{"name":"National Science and Technology Major Project of China"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers and Electronics in Agriculture"],"published-print":{"date-parts":[[2017,6]]},"DOI":"10.1016\/j.compag.2017.05.003","type":"journal-article","created":{"date-parts":[[2017,5,11]],"date-time":"2017-05-11T13:03:53Z","timestamp":1494507833000},"page":"1-9","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":36,"special_numbering":"C","title":["Fine crop mapping by combining high spectral and high spatial resolution remote sensing data in complex heterogeneous areas"],"prefix":"10.1016","volume":"139","author":[{"given":"Mingquan","family":"Wu","sequence":"first","affiliation":[]},{"given":"Wenjiang","family":"Huang","sequence":"additional","affiliation":[]},{"given":"Zheng","family":"Niu","sequence":"additional","affiliation":[]},{"given":"Yu","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Changyao","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Wang","family":"Li","sequence":"additional","affiliation":[]},{"given":"Pengyu","family":"Hao","sequence":"additional","affiliation":[]},{"given":"Bo","family":"Yu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compag.2017.05.003_b0005","doi-asserted-by":"crossref","first-page":"351","DOI":"10.1080\/17538947.2012.674159","article-title":"Spectral sensitivity of ALOS, ASTER, IKONOS, LANDSAT and SPOT satellite imagery intended for the detection of archaeological crop marks","volume":"7","author":"Agapiou","year":"2014","journal-title":"Int. J. Digital Earth"},{"key":"10.1016\/j.compag.2017.05.003_b0010","first-page":"285","article-title":"Monitoring olive mills waste disposal areas in Crete using very high resolution satellite data","volume":"19","author":"Agapiou","year":"2016","journal-title":"Egypt. J. Remote Sens. Space Sci."},{"key":"10.1016\/j.compag.2017.05.003_b0015","doi-asserted-by":"crossref","first-page":"8107","DOI":"10.3390\/rs70608107","article-title":"Spatial variability mapping of crop residue using hyperion (EO-1) hyperspectral data","volume":"7","author":"Bannari","year":"2015","journal-title":"Remote Sens."},{"key":"10.1016\/j.compag.2017.05.003_b0020","series-title":"Int. Conf. Water Resour.","first-page":"1397","article-title":"Crop pattern mapping of tumkur taluk using ndvi technique: a remote sensing and GIS approach","author":"Bharathkumar","year":"2015"},{"key":"10.1016\/j.compag.2017.05.003_b0025","doi-asserted-by":"crossref","first-page":"1246","DOI":"10.1109\/TGRS.2003.813206","article-title":"Preprocessing EO-1 Hyperion hyperspectral data to support the application of agricultural indexes","volume":"41","author":"Datt","year":"2003","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.compag.2017.05.003_b0030","doi-asserted-by":"crossref","first-page":"392","DOI":"10.1007\/s11119-013-9304-y","article-title":"Broad-scale cruciferous weed patch classification in winter wheat using QuickBird imagery for in-season site-specific control","volume":"14","author":"de Castro","year":"2013","journal-title":"Precision Agric."},{"key":"10.1016\/j.compag.2017.05.003_b0035","doi-asserted-by":"crossref","first-page":"312","DOI":"10.1016\/j.rse.2015.03.028","article-title":"Mapping farmland abandonment and recultivation across Europe using MODIS NDVI time series","volume":"163","author":"Estel","year":"2015","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.compag.2017.05.003_b0040","doi-asserted-by":"crossref","first-page":"502","DOI":"10.1080\/10106049.2012.724454","article-title":"Using hyperspectral reflectance data to assess biocontrol damage of giant salvinia","volume":"28","author":"Everitt","year":"2013","journal-title":"Geocarto Int."},{"key":"10.1016\/j.compag.2017.05.003_b0045","doi-asserted-by":"crossref","first-page":"185","DOI":"10.1016\/S0034-4257(01)00295-4","article-title":"Status of land cover classification accuracy assessment","volume":"80","author":"Foody","year":"2002","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.compag.2017.05.003_b0050","doi-asserted-by":"crossref","first-page":"9045","DOI":"10.3390\/rs70709045","article-title":"Prediction of macronutrients at the canopy level using spaceborne imaging spectroscopy and LiDAR data in a mixedwood boreal forest","volume":"7","author":"G\u00f6kkaya","year":"2015","journal-title":"Remote Sens."},{"key":"10.1016\/j.compag.2017.05.003_b0055","doi-asserted-by":"crossref","first-page":"446","DOI":"10.1109\/JSTARS.2012.2222355","article-title":"Crop residue modeling and mapping using landsat, ALI, Hyperion and airborne remote sensing data","volume":"6","author":"Galloza","year":"2013","journal-title":"IEEE J. Selected Topics in Appl. Earth Observations Remote Sens."},{"key":"10.1016\/j.compag.2017.05.003_b0060","doi-asserted-by":"crossref","first-page":"10335","DOI":"10.3390\/rs61110335","article-title":"Combined spectral and spatial modeling of corn yield based on aerial images and crop surface models acquired with an unmanned aircraft system","volume":"6","author":"Geipel","year":"2014","journal-title":"Remote Sens."},{"key":"10.1016\/j.compag.2017.05.003_b0065","doi-asserted-by":"crossref","first-page":"2607","DOI":"10.1080\/01431161.2012.748992","article-title":"Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data","volume":"34","author":"Gong","year":"2013","journal-title":"Int. J. Remote Sens."},{"key":"10.1016\/j.compag.2017.05.003_b0070","doi-asserted-by":"crossref","first-page":"89","DOI":"10.5194\/nhess-10-89-2010","article-title":"Atmospheric correction for satellite remotely sensed data intended for agricultural applications: impact on vegetation indices","volume":"10","author":"Hadjimitsis","year":"2010","journal-title":"Nat. Hazards Earth Syst. Sci."},{"key":"10.1016\/j.compag.2017.05.003_b0075","doi-asserted-by":"crossref","first-page":"5347","DOI":"10.3390\/rs70505347","article-title":"Feature selection of time series MODIS data for early crop classification using random forest: a case study in Kansas, USA","volume":"7","author":"Hao","year":"2015","journal-title":"Remote Sens."},{"key":"10.1016\/j.compag.2017.05.003_b0080","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.ecocom.2013.06.003","article-title":"Review of optical-based remote sensing for plant trait mapping","volume":"15","author":"Homolova","year":"2013","journal-title":"Ecol. Complexity"},{"key":"10.1016\/j.compag.2017.05.003_b0085","doi-asserted-by":"crossref","first-page":"145","DOI":"10.1016\/0034-4257(93)90013-N","article-title":"the spectral image-processing system (SIPS) \u2013 interactive visualization and analysis of imaging spectrometer data","volume":"44","author":"Kruse","year":"1993","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.compag.2017.05.003_b0090","doi-asserted-by":"crossref","first-page":"50","DOI":"10.1016\/j.rse.2015.06.006","article-title":"Application of hyperspectral remote sensing for flower mapping in African savannas","volume":"166","author":"Landmann","year":"2015","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.compag.2017.05.003_b0095","doi-asserted-by":"crossref","first-page":"16091","DOI":"10.3390\/rs71215820","article-title":"Object-based crop classification with landsat-MODIS enhanced time-series data","volume":"7","author":"Li","year":"2015","journal-title":"Remote Sens."},{"key":"10.1016\/j.compag.2017.05.003_b0100","first-page":"110","article-title":"Modeling of maize gross primary production using MODIS imagery and flux tower data","volume":"9","author":"Li","year":"2016","journal-title":"Int. J. Agr. Biol. Eng."},{"key":"10.1016\/j.compag.2017.05.003_b0105","first-page":"28","article-title":"Monitoring paddy rice phenology using time series MODIS data over Jiangxi Province, China","volume":"7","author":"Li","year":"2014","journal-title":"Int. J. Agr. Biol. Eng."},{"key":"10.1016\/j.compag.2017.05.003_b0110","doi-asserted-by":"crossref","first-page":"9034","DOI":"10.3390\/rs6099034","article-title":"Defining the spatial resolution requirements for crop identification using optical remote sensing","volume":"6","author":"Low","year":"2014","journal-title":"Remote Sens."},{"key":"10.1016\/j.compag.2017.05.003_b0115","doi-asserted-by":"crossref","first-page":"331","DOI":"10.1016\/j.jag.2014.05.005","article-title":"Automated high resolution mapping of coffee in Rwanda using an expert Bayesian network","volume":"33","author":"Mukashema","year":"2014","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"10.1016\/j.compag.2017.05.003_b0120","doi-asserted-by":"crossref","first-page":"3066","DOI":"10.1109\/TGRS.2011.2178419","article-title":"Evaluating classification techniques for mapping vertical geology using field-based hyperspectral sensors","volume":"50","author":"Murphy","year":"2012","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.compag.2017.05.003_b0125","doi-asserted-by":"crossref","first-page":"165","DOI":"10.1016\/j.isprsjprs.2015.09.007","article-title":"Wide-area mapping of small-scale features in agricultural landscapes using airborne remote sensing","volume":"109","author":"O'Connell","year":"2015","journal-title":"ISPRS J. Photogram. Remote Sens."},{"key":"10.1016\/j.compag.2017.05.003_b0130","doi-asserted-by":"crossref","first-page":"713","DOI":"10.1007\/s12524-016-0549-6","article-title":"Detection of alteration minerals using hyperion data analysis in lahroud","volume":"44","author":"Oskouei","year":"2016","journal-title":"J. Indian Soc. Remote Sens."},{"key":"10.1016\/j.compag.2017.05.003_b0135","doi-asserted-by":"crossref","first-page":"5611","DOI":"10.3390\/rs70505611","article-title":"Mapping of agricultural crops from single high-resolution multispectral images-data-driven smoothing vs parcel-based smoothing","volume":"7","author":"Ozdarici-Ok","year":"2015","journal-title":"Remote Sens."},{"key":"10.1016\/j.compag.2017.05.003_b0140","doi-asserted-by":"crossref","first-page":"20","DOI":"10.1117\/1.JRS.10.026004","article-title":"Satellite-based land use mapping: comparative analysis of Landsat-8, advanced land imager, and big data Hyperion imagery","volume":"10","author":"Pervez","year":"2016","journal-title":"J. Appl. Remote Sens."},{"key":"10.1016\/j.compag.2017.05.003_b0145","doi-asserted-by":"crossref","first-page":"3633","DOI":"10.3390\/rs70403633","article-title":"A hidden Markov models approach for crop classification: linking crop phenology to time series of multi-sensor remote sensing data","volume":"7","author":"Siachalou","year":"2015","journal-title":"Remote Sens."},{"key":"10.1016\/j.compag.2017.05.003_b0150","doi-asserted-by":"crossref","first-page":"334","DOI":"10.1016\/j.jag.2009.05.003","article-title":"A multi-resolution satellite imagery approach for large area mapping of ericaceous shrubs in Northern Quebec, Canada","volume":"11","author":"van Lier","year":"2009","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"10.1016\/j.compag.2017.05.003_b0155","doi-asserted-by":"crossref","first-page":"10400","DOI":"10.3390\/rs70810400","article-title":"Land cover and crop type classification along the season based on biophysical variables retrieved from multi-sensor high-resolution time series","volume":"7","author":"Waldner","year":"2015","journal-title":"Remote Sens."},{"key":"10.1016\/j.compag.2017.05.003_b0160","doi-asserted-by":"crossref","first-page":"5208","DOI":"10.1080\/01431161.2015.1093197","article-title":"Estimation of winter wheat acreage via a combination of remotely sensed data and an optimized spatial sampling scheme","volume":"36","author":"Wang","year":"2015","journal-title":"Int. J. Remote Sens."},{"key":"10.1016\/j.compag.2017.05.003_b0165","doi-asserted-by":"crossref","first-page":"113","DOI":"10.1080\/17538947.2013.821185","article-title":"Remote sensing-based global crop monitoring: experiences with China's CropWatch system","volume":"7","author":"Wu","year":"2014","journal-title":"Int. J. Digital Earth"},{"key":"10.1016\/j.compag.2017.05.003_b0170","doi-asserted-by":"crossref","first-page":"79","DOI":"10.1016\/j.rse.2014.03.001","article-title":"Modeling growing season phenology in North American forests using seasonal mean vegetation indices from MODIS","volume":"147","author":"Wu","year":"2014","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.compag.2017.05.003_b0175","doi-asserted-by":"crossref","first-page":"24002","DOI":"10.3390\/s150924002","article-title":"Generating daily synthetic Landsat imagery by combining Landsat and MODIS data","volume":"15","author":"Wu","year":"2015","journal-title":"Sensors"},{"key":"10.1016\/j.compag.2017.05.003_b0180","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.compag.2015.05.003","article-title":"High-resolution Leaf Area Index estimation from synthetic Landsat data generated by a spatial and temporal data fusion model","volume":"115","author":"Wu","year":"2015","journal-title":"Comput. Electron. Agr."},{"key":"10.1016\/j.compag.2017.05.003_b0185","doi-asserted-by":"crossref","first-page":"239","DOI":"10.3390\/rs9030239","article-title":"Evaluation of orthomosics and digital surface models derived from aerial imagery for crop type mapping","volume":"9","author":"Wu","year":"2017","journal-title":"Remote Sens."},{"key":"10.1016\/j.compag.2017.05.003_b0190","doi-asserted-by":"crossref","first-page":"16293","DOI":"10.3390\/rs71215826","article-title":"Reconstruction of Daily 30 m Data from HJ CCD, GF-1 WFV, Landsat, and MODIS data for crop monitoring","volume":"7","author":"Wu","year":"2015","journal-title":"Remote Sens."},{"key":"10.1016\/j.compag.2017.05.003_b0195","doi-asserted-by":"crossref","first-page":"1396","DOI":"10.1039\/C5EM00254K","article-title":"Generating daily high spatial land surface temperatures by combining ASTER and MODIS land surface temperature products for environmental process monitoring","volume":"17","author":"Wu","year":"2015","journal-title":"Environ. Sci.-Processes Impacts"},{"key":"10.1016\/j.compag.2017.05.003_b0200","article-title":"Use of MODIS and Landsat time series data to generate high-resolution temporal synthetic Landsat data using a spatial and temporal reflectance fusion model","volume":"6","author":"Wu","year":"2012","journal-title":"J. Appl. Remote Sens."},{"key":"10.1016\/j.compag.2017.05.003_b0205","doi-asserted-by":"crossref","DOI":"10.1016\/j.inffus.2015.12.005","article-title":"An improved high spatial and temporal data fusion approach for combining Landsat and MODIS data to generate daily synthetic Landsat imagery","volume":"31","author":"Wu","year":"2016","journal-title":"Inform. Fusion"},{"key":"10.1016\/j.compag.2017.05.003_b0210","doi-asserted-by":"crossref","first-page":"16293","DOI":"10.3390\/rs71215826","article-title":"Reconstruction of Daily 30 m Data from HJ CCD, GF-1 WFV, Landsat, and MODIS data for crop monitoring","volume":"7","author":"Wu","year":"2015","journal-title":"Remote Sens."},{"key":"10.1016\/j.compag.2017.05.003_b0215","doi-asserted-by":"crossref","DOI":"10.1117\/1.JRS.7.073556","article-title":"Evaluating airborne hyperspectral imagery for mapping saltcedar infestations in west Texas","volume":"7","author":"Yang","year":"2013","journal-title":"J. Appl. Remote Sens."},{"key":"10.1016\/j.compag.2017.05.003_b0220","doi-asserted-by":"crossref","first-page":"413","DOI":"10.1080\/10106049.2011.643321","article-title":"Applying six classifiers to airborne hyperspectral imagery for detecting giant reed","volume":"27","author":"Yang","year":"2012","journal-title":"Geocarto Int."},{"key":"10.1016\/j.compag.2017.05.003_b0225","doi-asserted-by":"crossref","first-page":"201","DOI":"10.1007\/s11119-014-9370-9","article-title":"Evaluating unsupervised and supervised image classification methods for mapping cotton root rot","volume":"16","author":"Yang","year":"2015","journal-title":"Precision Agr."},{"key":"10.1016\/j.compag.2017.05.003_b0230","doi-asserted-by":"crossref","first-page":"11974","DOI":"10.3390\/rs70911974","article-title":"The use of multi-temporal landsat imageries in detecting seasonal crop abandonment","volume":"7","author":"Yusoff","year":"2015","journal-title":"Remote Sens."},{"key":"10.1016\/j.compag.2017.05.003_b0235","doi-asserted-by":"crossref","first-page":"153","DOI":"10.1016\/j.jag.2016.01.002","article-title":"Multiscale quantification of urban composition from EO-1\/Hyperion data using object-based spectral unmixing","volume":"47","author":"Zhang","year":"2016","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"10.1016\/j.compag.2017.05.003_b0240","doi-asserted-by":"crossref","DOI":"10.1029\/2006JG000217","article-title":"Global vegetation phenology from moderate resolution imaging spectroradiometer (MODIS): evaluation of global patterns and comparison with in situ measurements","volume":"111","author":"Zhang","year":"2006","journal-title":"J. Geophys. Res.-Biogeosci."},{"key":"10.1016\/j.compag.2017.05.003_b0245","doi-asserted-by":"crossref","first-page":"177","DOI":"10.1016\/j.rse.2011.09.016","article-title":"Remote sensing of crop residue cover using multi-temporal Landsat imagery","volume":"117","author":"Zheng","year":"2012","journal-title":"Remote Sens. Environ."}],"container-title":["Computers and Electronics in Agriculture"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169916302460?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169916302460?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2020,5,17]],"date-time":"2020-05-17T21:54:16Z","timestamp":1589752456000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0168169916302460"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,6]]},"references-count":49,"alternative-id":["S0168169916302460"],"URL":"https:\/\/doi.org\/10.1016\/j.compag.2017.05.003","relation":{},"ISSN":["0168-1699"],"issn-type":[{"value":"0168-1699","type":"print"}],"subject":[],"published":{"date-parts":[[2017,6]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Fine crop mapping by combining high spectral and high spatial resolution remote sensing data in complex heterogeneous areas","name":"articletitle","label":"Article Title"},{"value":"Computers and Electronics in Agriculture","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compag.2017.05.003","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2017 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}