{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,29]],"date-time":"2024-07-29T09:51:42Z","timestamp":1722246702464},"reference-count":45,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2016,9,1]],"date-time":"2016-09-01T00:00:00Z","timestamp":1472688000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers and Electronics in Agriculture"],"published-print":{"date-parts":[[2016,9]]},"DOI":"10.1016\/j.compag.2016.07.009","type":"journal-article","created":{"date-parts":[[2016,7,16]],"date-time":"2016-07-16T09:15:27Z","timestamp":1468660527000},"page":"467-474","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":26,"special_numbering":"C","title":["Soybean varieties portfolio optimisation based on yield prediction"],"prefix":"10.1016","volume":"127","author":[{"given":"Oskar","family":"Marko","sequence":"first","affiliation":[]},{"given":"Sanja","family":"Brdar","sequence":"additional","affiliation":[]},{"given":"Marko","family":"Panic","sequence":"additional","affiliation":[]},{"given":"Predrag","family":"Lugonja","sequence":"additional","affiliation":[]},{"given":"Vladimir","family":"Crnojevic","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compag.2016.07.009_b0005","doi-asserted-by":"crossref","first-page":"448","DOI":"10.1007\/s11119-010-9187-0","article-title":"Yield prediction in apple orchards based on image processing","volume":"12","author":"Aggelopoulou","year":"2011","journal-title":"Precis. Agric."},{"key":"10.1016\/j.compag.2016.07.009_b0010","doi-asserted-by":"crossref","DOI":"10.1126\/science.327.5967.797","article-title":"Feeding the future","volume":"327","author":"Ash","year":"2010","journal-title":"Science"},{"key":"10.1016\/j.compag.2016.07.009_b0015","doi-asserted-by":"crossref","first-page":"39","DOI":"10.1017\/S107407080000328X","article-title":"Wheat variety selection to maximize returns and minimize risk: an application of portfolio theory","volume":"42","author":"Barkley","year":"2010","journal-title":"J. Agric. Appl. Econ."},{"key":"10.1016\/j.compag.2016.07.009_b0020","doi-asserted-by":"crossref","first-page":"341","DOI":"10.1080\/10106049.2011.562309","article-title":"Monitoring US agriculture: the US department of agriculture, national agricultural statistics service, cropland data layer program","volume":"26","author":"Boryan","year":"2011","journal-title":"Geocarto Int."},{"key":"10.1016\/j.compag.2016.07.009_b0025","series-title":"Convex Optimization","author":"Boyd","year":"2004"},{"key":"10.1016\/j.compag.2016.07.009_b0030","series-title":"Proceedings of the Second International Workshop on Sensing Technologies in Agriculture, Forestry and Environment (EcoSense 2011), Belgrade, Serbia, April, 2011","first-page":"43","article-title":"Support vector machines with features contribution analysis for agricultural yield prediction","author":"Brdar","year":"2011"},{"key":"10.1016\/j.compag.2016.07.009_b0035","first-page":"108","article-title":"K\u2217: an instance-based learner using an entropic distance measure","volume":"vol. 5","author":"Cleary","year":"1995"},{"key":"10.1016\/j.compag.2016.07.009_b0040","doi-asserted-by":"crossref","first-page":"564","DOI":"10.1109\/TPAMI.2003.1195991","article-title":"Kernel-based object tracking","volume":"25","author":"Comaniciu","year":"2003","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.compag.2016.07.009_b0045","doi-asserted-by":"crossref","first-page":"207","DOI":"10.1146\/annurev-resource-110811-114543","article-title":"On the value of agricultural biodiversity","volume":"4","author":"Di Falco","year":"2012","journal-title":"Annu. Rev. Resour. Econ."},{"key":"10.1016\/j.compag.2016.07.009_b0050","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1016\/j.forpol.2015.12.010","article-title":"Forest planning and productivity-risk trade-off through the Markowitz mean-variance model","volume":"64","author":"Dragicevic","year":"2016","journal-title":"For. Policy Econ."},{"key":"10.1016\/j.compag.2016.07.009_b0055","doi-asserted-by":"crossref","first-page":"5","DOI":"10.13031\/2013.12541","article-title":"Statistical and neural methods for site-specific yield prediction","volume":"46","author":"Drummond","year":"2003","journal-title":"Trans. ASAE"},{"key":"10.1016\/j.compag.2016.07.009_b0060","unstructured":"FAO, 2016, AQUASTAT Website, Food and Agriculture Organization of the United Nations (FAO). (Accessed on 27th of June 2016)."},{"key":"10.1016\/j.compag.2016.07.009_b0065","doi-asserted-by":"crossref","first-page":"2155","DOI":"10.1016\/j.neucom.2008.08.019","article-title":"Prediction-based portfolio optimization model using neural networks","volume":"72","author":"Freitas","year":"2009","journal-title":"Neurocomputing"},{"key":"10.1016\/j.compag.2016.07.009_b0070","doi-asserted-by":"crossref","first-page":"119","DOI":"10.1006\/jcss.1997.1504","article-title":"A decision-theoretic generalization of on-line learning and an application to boosting","volume":"55","author":"Freund","year":"1997","journal-title":"J. Comput. Syst. Sci."},{"key":"10.1016\/j.compag.2016.07.009_b0075","doi-asserted-by":"crossref","first-page":"367","DOI":"10.1016\/S0167-9473(01)00065-2","article-title":"Stochastic gradient boosting","volume":"38","author":"Friedman","year":"2002","journal-title":"Comput. Stat. Data Anal."},{"key":"10.1016\/j.compag.2016.07.009_b0080","first-page":"34","article-title":"Improving food security through increasing the precision of agricultural development","author":"Gassner","year":"2013","journal-title":"Precis. Agric. Sustain. Environ. Protect."},{"key":"10.1016\/j.compag.2016.07.009_b0085","doi-asserted-by":"crossref","first-page":"812","DOI":"10.1126\/science.1185383","article-title":"Food security: the challenge of feeding 9 billion people","volume":"327","author":"Godfray","year":"2010","journal-title":"Science"},{"key":"10.1016\/j.compag.2016.07.009_b0090","doi-asserted-by":"crossref","first-page":"313","DOI":"10.5424\/sjar\/2014122-4439","article-title":"Predictive ability of machine learning methods for massive crop yield prediction","volume":"12","author":"Gonzalez-Sanchez","year":"2014","journal-title":"Span. J. Agric. Res."},{"key":"10.1016\/j.compag.2016.07.009_b0095","series-title":"Recent Advances in Learning and Control","first-page":"95","article-title":"Graph implementations for nonsmooth convex programs","author":"Grant","year":"2008"},{"key":"10.1016\/j.compag.2016.07.009_b0100","unstructured":"Grant, M., Boyd, S., 2014. CVX: Matlab Software for Disciplined Convex Programming, Version 2.1. ."},{"key":"10.1016\/j.compag.2016.07.009_b0105","doi-asserted-by":"crossref","DOI":"10.1145\/1656274.1656278","article-title":"The WEKA data mining software: an update","volume":"11","author":"Hall","year":"2009","journal-title":"SIGKDD Explorat."},{"key":"10.1016\/j.compag.2016.07.009_b0110","series-title":"Food Security, Inclusive Growth, Sustainability, and the Post-2015 Development Agenda, Background Research Paper submitted to the High Level Panel on the Post-2015 Development Agenda","author":"Hanson","year":"2013"},{"key":"10.1016\/j.compag.2016.07.009_b0115","doi-asserted-by":"crossref","first-page":"e105992","DOI":"10.1371\/journal.pone.0105992","article-title":"Soil grids 1km \u2013 global soil information based on automated mapping","volume":"9","author":"Hengl","year":"2014","journal-title":"PLoS One"},{"key":"10.1016\/j.compag.2016.07.009_b0120","doi-asserted-by":"crossref","first-page":"15","DOI":"10.1016\/0020-0190(76)90095-8","article-title":"Constructing optimal binary decision trees is np-complete","volume":"5","author":"Hyafil","year":"1976","journal-title":"Inform. Process. Lett."},{"key":"10.1016\/j.compag.2016.07.009_b0125","first-page":"574","article-title":"Gaussian weighted histogram intersection for license plate classification","volume":"vol. 3","author":"Jia","year":"2006"},{"key":"10.1016\/j.compag.2016.07.009_b0130","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.agsy.2004.07.009","article-title":"Artificial neural networks for corn and soybean yield prediction","volume":"85","author":"Kaul","year":"2005","journal-title":"Agric. Syst."},{"key":"10.1016\/j.compag.2016.07.009_b0135","doi-asserted-by":"crossref","first-page":"603","DOI":"10.1016\/S0927-5398(03)00007-0","article-title":"Improved estimation of the covariance matrix of stock returns with an application to portfolio selection","volume":"10","author":"Ledoit","year":"2003","journal-title":"J. Empir. Finan."},{"key":"10.1016\/j.compag.2016.07.009_b0140","series-title":"Precision Agriculture\u201915","first-page":"188","article-title":"Use of NDVI to Predict Yield Variability in a Commercial Apple Orchard","author":"Liakos","year":"2015"},{"key":"10.1016\/j.compag.2016.07.009_b0145","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1023\/A:1003941615886","article-title":"Farmers\u2019 seed selection practices and traditional maize varieties in Cuzalapa, Mexico","volume":"113","author":"Louette","year":"2000","journal-title":"Euphytica"},{"key":"10.1016\/j.compag.2016.07.009_b0150","series-title":"Proceedings of the First International Workshop on Sensing Technologies in Agriculture, Forestry and Environment (BioSense09), Novi Sad, Serbia, October, 2009","first-page":"1","article-title":"Data mining approach for predictive modeling of agricultural yield data","author":"Marinkovi\u0107","year":"2009"},{"key":"10.1016\/j.compag.2016.07.009_b0155","first-page":"77","article-title":"Portfolio selection","volume":"7","author":"Markowitz","year":"1952","journal-title":"J. Finan."},{"key":"10.1016\/j.compag.2016.07.009_b0160","doi-asserted-by":"crossref","first-page":"179","DOI":"10.1007\/s12571-015-0528-8","article-title":"Seed systems smallholder farmers use","volume":"8","author":"McGuire","year":"2016","journal-title":"Food Secur."},{"key":"10.1016\/j.compag.2016.07.009_b0165","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1175\/1087-3562(1998)002<0001:ACUSMS>2.3.CO;2","article-title":"A conterminous United States multilayer soil characteristics dataset for regional climate and hydrology modeling","volume":"2","author":"Miller","year":"1998","journal-title":"Earth Interact."},{"key":"10.1016\/j.compag.2016.07.009_b0170","first-page":"334","article-title":"Using portfolio theory to enhance wheat yield stability in low-income nations: an application in the Yaqui valley of northwestern Mexico","author":"Nalley","year":"2010","journal-title":"J. Agric. Resour. Econ."},{"key":"10.1016\/j.compag.2016.07.009_b0175","doi-asserted-by":"crossref","first-page":"641","DOI":"10.1017\/S1074070800003126","article-title":"Enhancing farm profitability through portfolio analysis: the case of spatial rice variety selection","volume":"41","author":"Nalley","year":"2009","journal-title":"J. Agric. Appl. Econ."},{"key":"10.1016\/j.compag.2016.07.009_b0180","doi-asserted-by":"crossref","first-page":"57","DOI":"10.1016\/j.compag.2015.11.018","article-title":"Wheat yield prediction using machine learning and advanced sensing techniques","volume":"121","author":"Pantazi","year":"2016","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2016.07.009_b0185","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1016\/j.compag.2012.11.008","article-title":"Yield prediction in apples using fuzzy cognitive map learning approach","volume":"91","author":"Papageorgiou","year":"2013","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2016.07.009_b0190","doi-asserted-by":"crossref","first-page":"47","DOI":"10.1016\/j.agwat.2012.08.004","article-title":"Irrigation water management in uncertain conditions application of modern portfolio theory","volume":"115","author":"Paydar","year":"2012","journal-title":"Agric. Water Manage."},{"key":"10.1016\/j.compag.2016.07.009_b0195","doi-asserted-by":"crossref","first-page":"173","DOI":"10.1016\/j.compag.2013.05.006","article-title":"Using classification algorithms for predicting durum wheat yield in the province of Buenos Aires","volume":"96","author":"Romero","year":"2013","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2016.07.009_b0200","doi-asserted-by":"crossref","first-page":"93","DOI":"10.1016\/j.compag.2013.09.003","article-title":"Predictive models for yield and protein content of brown rice using support vector machine","volume":"99","author":"Saruta","year":"2013","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2016.07.009_b0205","article-title":"Integrating seed systems","volume":"3","author":"Sperling","year":"2014","journal-title":"Plan. Scale Brief"},{"key":"10.1016\/j.compag.2016.07.009_b0210","unstructured":"Syngenta Crop Challenge. (Accessed on 21st June 2016)."},{"key":"10.1016\/j.compag.2016.07.009_b0215","doi-asserted-by":"crossref","first-page":"149","DOI":"10.1016\/j.compag.2004.11.014","article-title":"Artificial neural networks to predict corn yield from compact airborne spectrographic imager data","volume":"47","author":"Uno","year":"2005","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2016.07.009_b0220","doi-asserted-by":"crossref","first-page":"232","DOI":"10.1515\/sg-2013-0028","article-title":"Using portfolio theory to improve yield and reduce risk in black spruce family reforestation","volume":"62","author":"Weng","year":"2013","journal-title":"Silv. Genet."},{"key":"10.1016\/j.compag.2016.07.009_b0225","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/2048-7010-1-19","article-title":"Determinants of yield differences in small-scale food crop farming systems in Cameroon","volume":"1","author":"Yengoh","year":"2012","journal-title":"Agric. Food Secur."}],"container-title":["Computers and Electronics in Agriculture"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169916304835?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169916304835?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,10,30]],"date-time":"2019-10-30T12:30:38Z","timestamp":1572438638000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0168169916304835"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2016,9]]},"references-count":45,"alternative-id":["S0168169916304835"],"URL":"https:\/\/doi.org\/10.1016\/j.compag.2016.07.009","relation":{},"ISSN":["0168-1699"],"issn-type":[{"value":"0168-1699","type":"print"}],"subject":[],"published":{"date-parts":[[2016,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Soybean varieties portfolio optimisation based on yield prediction","name":"articletitle","label":"Article Title"},{"value":"Computers and Electronics in Agriculture","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compag.2016.07.009","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2016 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}