{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,12,30]],"date-time":"2024-12-30T18:32:46Z","timestamp":1735583566989},"reference-count":37,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2016,2,1]],"date-time":"2016-02-01T00:00:00Z","timestamp":1454284800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"name":"ICT-AGRI2"},{"name":"FarmFUSE"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers and Electronics in Agriculture"],"published-print":{"date-parts":[[2016,2]]},"DOI":"10.1016\/j.compag.2015.11.018","type":"journal-article","created":{"date-parts":[[2015,12,22]],"date-time":"2015-12-22T00:54:47Z","timestamp":1450745687000},"page":"57-65","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":399,"special_numbering":"C","title":["Wheat yield prediction using machine learning and advanced sensing techniques"],"prefix":"10.1016","volume":"121","author":[{"given":"X.E.","family":"Pantazi","sequence":"first","affiliation":[]},{"given":"D.","family":"Moshou","sequence":"additional","affiliation":[]},{"given":"T.","family":"Alexandridis","sequence":"additional","affiliation":[]},{"given":"R.L.","family":"Whetton","sequence":"additional","affiliation":[]},{"given":"A.M.","family":"Mouazen","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"5","key":"10.1016\/j.compag.2015.11.018_b0010","doi-asserted-by":"crossref","first-page":"549","DOI":"10.1080\/03650341003631400","article-title":"Comparing multivariate regression and artificial neural network to predict barley production from soil characteristics in northern Iran","volume":"57","author":"Ayoubi","year":"2011","journal-title":"Arch. Agron. Soil Sci."},{"issue":"2","key":"10.1016\/j.compag.2015.11.018_b0015","first-page":"107","article-title":"Relationships of barley biomass and grain yields to soil properties within a field in the arid region: use of factor analysis","volume":"59","author":"Ayoubi","year":"2009","journal-title":"Acta Agric. Scand. Sect. B \u2013 Soil Plant Sci."},{"issue":"2","key":"10.1016\/j.compag.2015.11.018_b0020","doi-asserted-by":"crossref","first-page":"149","DOI":"10.1080\/00380768.2012.661078","article-title":"Soil shear strength prediction using intelligent systems: artificial neural networks and an adaptive neuro-fuzzy inference system","volume":"58","author":"Besalatpour","year":"2012","journal-title":"Soil Sci. Plant Nutr."},{"issue":"2","key":"10.1016\/j.compag.2015.11.018_b0025","doi-asserted-by":"crossref","first-page":"117","DOI":"10.1002\/jsfa.2740310203","article-title":"Effects of waterlogging at different stages of development on the growth and yield of winter wheat","volume":"31","author":"Cannell","year":"1980","journal-title":"J. Sci. Food Agric."},{"issue":"10","key":"10.1016\/j.compag.2015.11.018_b0035","doi-asserted-by":"crossref","first-page":"957","DOI":"10.1071\/AR03089","article-title":"Yield response of restricted-tillering wheat to transient waterlogging on duplex soils","volume":"54","author":"Condon","year":"2003","journal-title":"Aust. J. Agric. Res."},{"issue":"1","key":"10.1016\/j.compag.2015.11.018_b0040","doi-asserted-by":"crossref","first-page":"35","DOI":"10.1016\/0034-4257(91)90048-B","article-title":"A review of assessing the accuracy of classifications of remotely sensed data","volume":"37","author":"Congalton","year":"1991","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.compag.2015.11.018_b0045","unstructured":"Drummond, S.T., Sudduth, K.A., Birrell, S.J., 1995. Analysis and Correlation Methods for Spatial Data. ASAE Paper No. 95-1335, St. Joseph, Michigan, ASAE."},{"issue":"1","key":"10.1016\/j.compag.2015.11.018_b0050","doi-asserted-by":"crossref","first-page":"5","DOI":"10.13031\/2013.12541","article-title":"Statistical and neural methods for site-specific yield prediction","volume":"46","author":"Drummond","year":"2003","journal-title":"Trans. ASAE"},{"issue":"3","key":"10.1016\/j.compag.2015.11.018_b0055","doi-asserted-by":"crossref","first-page":"390","DOI":"10.3844\/ajassp.2010.390.394","article-title":"A back propagation neural networks for grading Jatropha curcas fruits maturity","volume":"7","author":"Effendi","year":"2010","journal-title":"Am. J. Appl. Sci."},{"issue":"2","key":"10.1016\/j.compag.2015.11.018_b0060","doi-asserted-by":"crossref","first-page":"126","DOI":"10.1016\/j.compag.2010.05.011","article-title":"A neural network experiment on the site-specific simulation of potato tuber growth in Eastern Canada","volume":"73","author":"Fortin","year":"2010","journal-title":"Comput. Electr. Agric."},{"key":"10.1016\/j.compag.2015.11.018_b0065","series-title":"Precision Agriculture (2013)","first-page":"475","article-title":"Site-specific land management of cereal crops based on management zone delineation by proximal soil sensing","author":"Halcro","year":"2013"},{"issue":"6","key":"10.1016\/j.compag.2015.11.018_b0075","doi-asserted-by":"crossref","first-page":"2027","DOI":"10.13031\/2013.22264","article-title":"Artificial neural network model as a data analysis tool in precision farming","volume":"49","author":"Irmak","year":"2006","journal-title":"Trans. ASABE"},{"key":"10.1016\/j.compag.2015.11.018_b0080","doi-asserted-by":"crossref","unstructured":"Khakural, B.R., Robert, P.C., Huggins, D.R., 1999. Variability of corn\/soybean yield and soil\/landscape properties across a southwestern Minnesota landscape. In: Proceedings of the Fourth International Conference on Precision Agriculture, pp. 573\u2013579.","DOI":"10.2134\/1999.precisionagproc4.c51"},{"key":"10.1016\/j.compag.2015.11.018_b0090","series-title":"Self-Organization and Associative Memory","author":"Kohonen","year":"1988"},{"issue":"1","key":"10.1016\/j.compag.2015.11.018_b0095","doi-asserted-by":"crossref","first-page":"75","DOI":"10.2134\/agronj2000.92175x","article-title":"Correlation of corn and soybean grain yield with topography and soil properties","volume":"92","author":"Kravchenko","year":"2000","journal-title":"Agron. J."},{"issue":"3","key":"10.1016\/j.compag.2015.11.018_b0100","doi-asserted-by":"crossref","first-page":"249","DOI":"10.1016\/j.biosystemseng.2013.01.005","article-title":"Non-biased prediction of soil organic carbon and total nitrogen with vis\u2013NIR spectroscopy, as affected by soil moisture content and texture","volume":"114","author":"Kuang","year":"2013","journal-title":"Biosyst. Eng."},{"issue":"3","key":"10.1016\/j.compag.2015.11.018_b0105","first-page":"705","article-title":"A neural network for setting target corn yields","volume":"44","author":"Liu","year":"2001","journal-title":"Trans. ASAE"},{"key":"10.1016\/j.compag.2015.11.018_b0110","unstructured":"MacQueen, J.B., 1967. Some methods for classification and analysis of multivariate observations. In: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability 1. University of California Press. pp. 281\u2013297. MR 0214227. Zbl 0214.46201. Retrieved 2009-04-07."},{"key":"10.1016\/j.compag.2015.11.018_b0115","doi-asserted-by":"crossref","first-page":"21","DOI":"10.1016\/j.still.2013.04.004","article-title":"On-line measurement of soil properties without direct spectral response in near infrared spectral range","volume":"132","author":"Marin-Gonz\u00e1lez","year":"2013","journal-title":"Soil Tillage Res."},{"key":"10.1016\/j.compag.2015.11.018_b0120","doi-asserted-by":"crossref","first-page":"121","DOI":"10.1016\/j.aca.2009.01.009","article-title":"Artificial neural networks in food analysis: trends and perspectives","volume":"635","author":"Marini","year":"2009","journal-title":"Anal. Chim. Acta"},{"key":"10.1016\/j.compag.2015.11.018_b0125","doi-asserted-by":"crossref","first-page":"99","DOI":"10.1016\/j.chemolab.2006.02.003","article-title":"Supervised Kohonen networks for classification problems","volume":"83","author":"Melssen","year":"2006","journal-title":"Chemometr. Intell. Lab. Syst."},{"issue":"117","key":"10.1016\/j.compag.2015.11.018_b9000","first-page":"135","article-title":"Identifying important factors influencing corn yield and grain quality variability using artificial neural networks","volume":"7","author":"Miao","year":"2006","journal-title":"Precis. Agric."},{"key":"10.1016\/j.compag.2015.11.018_b0135","unstructured":"Mouazen, A.M., 2006. Soil Survey Device. International Publication Published Under the Patent Cooperation Treaty (PCT). World Intellectual Property Organization, International Bureau. International Publication Number: WO2006\/015463; PCT\/BE2005\/000129; IPC: G01N21\/00; G01N21\/00."},{"key":"10.1016\/j.compag.2015.11.018_b0150","doi-asserted-by":"crossref","first-page":"13","DOI":"10.1016\/j.still.2006.03.009","article-title":"On-line measurement of some selected soil properties using a VIS\u2013NIR sensor","volume":"93","author":"Mouazen","year":"2007","journal-title":"Soil Tillage Res."},{"issue":"1","key":"10.1016\/j.compag.2015.11.018_b0155","doi-asserted-by":"crossref","first-page":"144","DOI":"10.1016\/j.still.2008.10.006","article-title":"Optimum three-point linkage set up for improving the quality of soil spectra and the accuracy of soil phosphorous measured using an on-line visible and near infrared sensor","volume":"103","author":"Mouazen","year":"2009","journal-title":"Soil Tillage Res."},{"key":"10.1016\/j.compag.2015.11.018_b0160","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1016\/j.still.2014.06.003","article-title":"Multiple on-line soil sensors and data fusion approach for delineation of water holding capacity zones for site specific irrigation","volume":"143","author":"Mouazen","year":"2014","journal-title":"Soil Tillage Res."},{"issue":"4","key":"10.1016\/j.compag.2015.11.018_b0165","first-page":"341","article-title":"Predicting rainfed wheat quality and quantity by artificial neural network using terrain and soil characteristics","volume":"60","author":"Norouzi","year":"2010","journal-title":"Acta Agric. Scand. Sect. B \u2013 Soil Plant Sci."},{"key":"10.1016\/j.compag.2015.11.018_b0170","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1016\/j.compag.2012.11.008","article-title":"Yield prediction in apples using Fuzzy Cognitive Map learning approach","volume":"91","author":"Papageorgiou","year":"2013","journal-title":"Comput. Electr. Agric."},{"key":"10.1016\/j.compag.2015.11.018_b0180","unstructured":"Rao, J.P., 1992. Expert Systems in Agriculture, ."},{"key":"10.1016\/j.compag.2015.11.018_b0190","unstructured":"Rouse Jr., J., Haas, R.H., Schell, J.A., Deering, D.W., 1974. Monitoring Vegetation Systems in the Great Plains with ERTS. NASA Special Publication, 351, p. 309."},{"key":"10.1016\/j.compag.2015.11.018_b9005","doi-asserted-by":"crossref","first-page":"73","DOI":"10.1016\/S0168-1699(00)00137-X","article-title":"Neural networks in agroecological modelling \u2013 stylish application or helpful tool?","volume":"29","author":"Schultz","year":"2000","journal-title":"Comput. Electr. Agric."},{"key":"10.1016\/j.compag.2015.11.018_b0195","unstructured":"Shearer, S.A., Thomasson, J.A., Mueller, T.G., Fulton, J.P., Higgins, S.F., Samson, S., 1999. Yield Prediction using a Neural Network Classifier Trained using Soil Landscape Features and Soil Fertility Data. ASAE Paper No. 993042. St. Joseph, Michigan, USA."},{"key":"10.1016\/j.compag.2015.11.018_b0200","unstructured":"Shibusawa, S., I Made Anom, S.W., Sato, H.P., Sasao, A., 2001. Soil mapping using the real-time soil spectrometer. In: Gerenier, G., Blackmore, S. (Eds.), \u201cECPA 2001\u201d, agro Montpellier, vol. 2, Montpellier, France, pp. 485\u2013490."},{"key":"10.1016\/j.compag.2015.11.018_b0210","doi-asserted-by":"crossref","unstructured":"Uno, Y., Prasher, S.O., Lacroix, R., Goel, P.K., Karimi, Y., Viau, A., Patel R.M., 2005. Artificial neural networks to predict corn yield from Compact Airborne Spectrographic Imager data. Comput. Electr. Agric., 47(2), 149\u2013161.","DOI":"10.1016\/j.compag.2004.11.014"},{"issue":"1\u20132","key":"10.1016\/j.compag.2015.11.018_b0215","first-page":"59","article-title":"Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties","volume":"131","author":"Viscarra Rossela","year":"2005","journal-title":"Geoderma"},{"issue":"1","key":"10.1016\/j.compag.2015.11.018_b0225","doi-asserted-by":"crossref","first-page":"142","DOI":"10.1111\/sum.12167","article-title":"ANN-based pedotransfer and soil spatial prediction functions for predicting Atterberg consistency limits and indices from easily available properties at the watershed scale in western Iran","volume":"31","author":"Zolfaghari","year":"2015","journal-title":"Soil Use Manage."},{"key":"10.1016\/j.compag.2015.11.018_b0230","doi-asserted-by":"crossref","first-page":"175","DOI":"10.1016\/0169-7439(95)80022-2","article-title":"Neural networks with counter-propagation learning strategy used for modelling","volume":"27","author":"Zupan","year":"1995","journal-title":"Chemometr. Intell. Lab. Syst."}],"container-title":["Computers and Electronics in Agriculture"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169915003671?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169915003671?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2020,9,13]],"date-time":"2020-09-13T02:30:37Z","timestamp":1599964237000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0168169915003671"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2016,2]]},"references-count":37,"alternative-id":["S0168169915003671"],"URL":"https:\/\/doi.org\/10.1016\/j.compag.2015.11.018","relation":{},"ISSN":["0168-1699"],"issn-type":[{"value":"0168-1699","type":"print"}],"subject":[],"published":{"date-parts":[[2016,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Wheat yield prediction using machine learning and advanced sensing techniques","name":"articletitle","label":"Article Title"},{"value":"Computers and Electronics in Agriculture","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compag.2015.11.018","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"Copyright \u00a9 2015 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}