{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T04:11:58Z","timestamp":1740111118979,"version":"3.37.3"},"reference-count":45,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,6,1]],"date-time":"2024-06-01T00:00:00Z","timestamp":1717200000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,6,1]],"date-time":"2024-06-01T00:00:00Z","timestamp":1717200000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,6,1]],"date-time":"2024-06-01T00:00:00Z","timestamp":1717200000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,6,1]],"date-time":"2024-06-01T00:00:00Z","timestamp":1717200000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,6,1]],"date-time":"2024-06-01T00:00:00Z","timestamp":1717200000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,6,1]],"date-time":"2024-06-01T00:00:00Z","timestamp":1717200000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,6,1]],"date-time":"2024-06-01T00:00:00Z","timestamp":1717200000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["62172153"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computer Networks"],"published-print":{"date-parts":[[2024,6]]},"DOI":"10.1016\/j.comnet.2024.110466","type":"journal-article","created":{"date-parts":[[2024,5,7]],"date-time":"2024-05-07T15:45:11Z","timestamp":1715096711000},"page":"110466","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Volatility-based diversity awareness for distributed data storage of Mobile Crowd Sensing"],"prefix":"10.1016","volume":"248","author":[{"given":"Jiaxin","family":"Peng","sequence":"first","affiliation":[]},{"given":"Siwang","family":"Zhou","sequence":"additional","affiliation":[]},{"given":"Liubo","family":"Ouyang","sequence":"additional","affiliation":[]},{"given":"Xingting","family":"Liu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.comnet.2024.110466_b1","series-title":"IEEE INFOCOM 2020 - IEEE Conference on Computer Communications","first-page":"179","article-title":"Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing","author":"Gao","year":"2020"},{"issue":"2","key":"10.1016\/j.comnet.2024.110466_b2","doi-asserted-by":"crossref","first-page":"54","DOI":"10.1109\/MCOM.2018.1700965","article-title":"Task-bundling-based incentive for location-dependent mobile crowdsourcing","volume":"57","author":"Wang","year":"2019","journal-title":"IEEE Commun. Mag."},{"issue":"2","key":"10.1016\/j.comnet.2024.110466_b3","doi-asserted-by":"crossref","first-page":"519","DOI":"10.1109\/TNET.2019.2962362","article-title":"Privacy-preserving user recruitment protocol for mobile crowdsensing","volume":"28","author":"Xiao","year":"2020","journal-title":"IEEE\/ACM Trans. Netw."},{"key":"10.1016\/j.comnet.2024.110466_b4","doi-asserted-by":"crossref","DOI":"10.1016\/j.ins.2023.119286","article-title":"A decentralized trust inference approach with intelligence to improve data collection quality for mobile crowd sensing","volume":"644","author":"Yang","year":"2023","journal-title":"Inform. Sci."},{"key":"10.1016\/j.comnet.2024.110466_b5","doi-asserted-by":"crossref","DOI":"10.1145\/3498321","article-title":"Compressive sensing based distributed data storage for mobile crowdsensing","author":"Zhou","year":"2022","journal-title":"ACM Trans. Sensor Netw."},{"key":"10.1016\/j.comnet.2024.110466_b6","first-page":"1","article-title":"Decentralized and compressed data storage for mobile crowdsensing","author":"Zhou","year":"2023","journal-title":"IEEE Trans. Mob. Comput."},{"issue":"4","key":"10.1016\/j.comnet.2024.110466_b7","doi-asserted-by":"crossref","first-page":"1289","DOI":"10.1109\/TIT.2006.871582","article-title":"Compressed sensing","volume":"52","author":"Donoho","year":"2006","journal-title":"IEEE Trans. Inform. Theory"},{"key":"10.1016\/j.comnet.2024.110466_b8","doi-asserted-by":"crossref","DOI":"10.1109\/MSP.2007.914728","article-title":"Compressed sensing MRI","volume":"25","author":"Lustig","year":"2008","journal-title":"IEEE Signal Process. Mag."},{"issue":"4","key":"10.1016\/j.comnet.2024.110466_b9","first-page":"6665","article-title":"Volatility-based measurements allocation for distributed data storage in mobile crowd sensing","volume":"17","author":"Peng","year":"2023","journal-title":"IEEE Syst. J."},{"key":"10.1016\/j.comnet.2024.110466_b10","article-title":"Adaptive basis scan by wavelet prediction for single-pixel imaging","author":"Florian","year":"2017","journal-title":"IEEE Trans. Comput. Imaging"},{"key":"10.1016\/j.comnet.2024.110466_b11","doi-asserted-by":"crossref","first-page":"5412","DOI":"10.1109\/TIP.2022.3195319","article-title":"Content-aware scalable deep compressed sensing","volume":"31","author":"Chen","year":"2022","journal-title":"IEEE Trans. Image Process."},{"issue":"11","key":"10.1016\/j.comnet.2024.110466_b12","doi-asserted-by":"crossref","first-page":"973","DOI":"10.1109\/LSP.2010.2080673","article-title":"Saliency-based compressive sampling for image signals","volume":"17","author":"Ying","year":"2010","journal-title":"IEEE Signal Process. Lett."},{"issue":"1","key":"10.1016\/j.comnet.2024.110466_b13","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3542697","article-title":"TempMesh\u2013A flexible wireless sensor network for monitoring river temperatures","volume":"19","author":"Burman","year":"2022","journal-title":"ACM Trans. Sensor Netw."},{"issue":"2","key":"10.1016\/j.comnet.2024.110466_b14","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3446005","article-title":"Low-cost outdoor air quality monitoring and sensor calibration: A survey and critical analysis","volume":"17","author":"Concas","year":"2021","journal-title":"ACM Trans. Sensor Netw."},{"key":"10.1016\/j.comnet.2024.110466_b15","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/JIOT.2021.3095285","article-title":"Stopping criteria for distributed data storage in compressive CrowdSensing systems","author":"Liu","year":"2023","journal-title":"IEEE Internet Things J."},{"key":"10.1016\/j.comnet.2024.110466_b16","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/JIOT.2021.3095285","article-title":"Adaptive sampling allocation for distributed data storage in compressive CrowdSensing","author":"Liu","year":"2023","journal-title":"IEEE Internet Things J."},{"key":"10.1016\/j.comnet.2024.110466_b17","doi-asserted-by":"crossref","first-page":"2022","DOI":"10.1109\/TMM.2022.3142952","article-title":"Recognition-oriented image compressive sensing with deep learning","volume":"25","author":"Zhou","year":"2023","journal-title":"IEEE Trans. Multimed."},{"key":"10.1016\/j.comnet.2024.110466_b18","doi-asserted-by":"crossref","first-page":"475","DOI":"10.1016\/j.adhoc.2015.09.009","article-title":"Cstorage: Decentralized compressive data storage in wireless sensor networks","volume":"37","author":"Talari","year":"2016","journal-title":"Ad Hoc Netw."},{"issue":"9","key":"10.1016\/j.comnet.2024.110466_b19","first-page":"20","article-title":"CESense: Cost-effective urban environment sensing in vehicular sensor networks","author":"Yuan","year":"2019","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"year":"2017","series-title":"Application of compressive sensing techniques in distributed sensor networks: A survey","author":"Wimalajeewa","key":"10.1016\/j.comnet.2024.110466_b20"},{"year":"2018","series-title":"Cell selection with deep reinforcement learning in sparse mobile crowdsensing","author":"Wang","key":"10.1016\/j.comnet.2024.110466_b21"},{"issue":"7","key":"10.1016\/j.comnet.2024.110466_b22","doi-asserted-by":"crossref","first-page":"4907","DOI":"10.1109\/TWC.2020.2988271","article-title":"Towards demand-driven dynamic incentive for mobile crowdsensing systems","volume":"19","author":"Hu","year":"2020","journal-title":"IEEE Trans. Wireless Commun."},{"issue":"9","key":"10.1016\/j.comnet.2024.110466_b23","doi-asserted-by":"crossref","first-page":"3250","DOI":"10.1109\/TMC.2021.3050147","article-title":"Privacy preserving participant recruitment for coverage maximization in location aware mobile crowdsensing","volume":"21","author":"Li","year":"2022","journal-title":"IEEE Trans. Mob. Comput."},{"issue":"12","key":"10.1016\/j.comnet.2024.110466_b24","doi-asserted-by":"crossref","first-page":"737","DOI":"10.1038\/s42256-020-00273-z","article-title":"Deep learning for tomographic image reconstruction","volume":"2","author":"Wang","year":"2020","journal-title":"Nat. Mach. Intell."},{"issue":"6","key":"10.1016\/j.comnet.2024.110466_b25","doi-asserted-by":"crossref","first-page":"1390","DOI":"10.1109\/TPDS.2018.2883550","article-title":"Region-based compressive networked storage with lazy encoding","volume":"30","author":"zhou","year":"2019","journal-title":"IEEE Trans. Parallel Distrib. Syst."},{"issue":"2","key":"10.1016\/j.comnet.2024.110466_b26","doi-asserted-by":"crossref","first-page":"731","DOI":"10.1016\/j.acha.2018.09.003","article-title":"Uniform recovery from subgaussian multi-sensor measurements","volume":"48","author":"Chun","year":"2020","journal-title":"Appl. Comput. Harmon. Anal."},{"year":"2017","series-title":"Compressed Sensing and Parallel Acquisition, no. 8","author":"Chun","key":"10.1016\/j.comnet.2024.110466_b27"},{"issue":"7","key":"10.1016\/j.comnet.2024.110466_b28","doi-asserted-by":"crossref","first-page":"885","DOI":"10.1016\/j.jvcir.2013.06.006","article-title":"Image representation using block compressive sensing for compression applications","volume":"24","author":"Gao","year":"2013","journal-title":"J. Vis. Commun. Image Represent."},{"key":"10.1016\/j.comnet.2024.110466_b29","doi-asserted-by":"crossref","first-page":"2627","DOI":"10.1109\/TMM.2020.3014561","article-title":"Multi-channel deep networks for block-based image compressive sensing","volume":"23","author":"Zhou","year":"2021","journal-title":"IEEE Trans. Multimed."},{"issue":"7","key":"10.1016\/j.comnet.2024.110466_b30","doi-asserted-by":"crossref","first-page":"1792","DOI":"10.1109\/TSP.2015.2401536","article-title":"Identifying outliers in large matrices via randomized adaptive compressive sampling","volume":"63","author":"Li","year":"2015","journal-title":"IEEE Trans. Signal Process."},{"key":"10.1016\/j.comnet.2024.110466_b31","doi-asserted-by":"crossref","first-page":"375","DOI":"10.1109\/TIP.2019.2928136","article-title":"Image compressed sensing using convolutional neural network","volume":"29","author":"Shi","year":"2019","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.comnet.2024.110466_b32","series-title":"2009 16th IEEE International Conference on Image Processing","first-page":"3021","article-title":"Block compressed sensing of images using directional transforms","author":"Mun","year":"2009"},{"key":"10.1016\/j.comnet.2024.110466_b33","doi-asserted-by":"crossref","first-page":"507","DOI":"10.1007\/s10589-013-9576-1","article-title":"An efficient augmented Lagrangian method with applications to total variation minimization","volume":"56","author":"Li","year":"2013","journal-title":"Comput. Optim. Appl."},{"key":"10.1016\/j.comnet.2024.110466_b34","series-title":"2010 IEEE International Conference on Image Processing","first-page":"3365","article-title":"Compressed sensing using a Gaussian scale mixtures model in wavelet domain","author":"Kim","year":"2010"},{"issue":"9","key":"10.1016\/j.comnet.2024.110466_b35","doi-asserted-by":"crossref","first-page":"3488","DOI":"10.1109\/TSP.2009.2022003","article-title":"Exploiting structure in wavelet-based Bayesian compressive sensing","volume":"57","author":"He","year":"2009","journal-title":"IEEE Trans. Signal Process."},{"issue":"3","key":"10.1016\/j.comnet.2024.110466_b36","doi-asserted-by":"crossref","first-page":"265","DOI":"10.1016\/j.acha.2009.04.002","article-title":"Iterative hard thresholding for compressed sensing","volume":"27","author":"Blumensath","year":"2009","journal-title":"Appl. Comput. Harmon. Anal."},{"key":"10.1016\/j.comnet.2024.110466_b37","series-title":"2010 IEEE Information Theory Workshop on Information Theory","first-page":"1","article-title":"Message passing algorithms for compressed sensing: I. motivation and construction","author":"Donoho","year":"2010"},{"issue":"8","key":"10.1016\/j.comnet.2024.110466_b38","doi-asserted-by":"crossref","first-page":"3336","DOI":"10.1109\/TIP.2014.2323127","article-title":"Group-based sparse representation for image restoration","volume":"23","author":"Zhang","year":"2014","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.comnet.2024.110466_b39","doi-asserted-by":"crossref","DOI":"10.1109\/TIT.2016.2556683","article-title":"1From denoising to compressed sensing","author":"Metzler","year":"2016","journal-title":"IEEE Trans. Inform. Theory"},{"issue":"20","key":"10.1016\/j.comnet.2024.110466_b40","doi-asserted-by":"crossref","first-page":"5479","DOI":"10.1109\/TSP.2015.2453137","article-title":"Orthogonal matching pursuit with thresholding and its application in compressive sensing","volume":"63","author":"Yang","year":"2015","journal-title":"IEEE Trans. Signal Process."},{"issue":"6205","key":"10.1016\/j.comnet.2024.110466_b41","doi-asserted-by":"crossref","first-page":"65","DOI":"10.1126\/science.1258213","article-title":"New global marine gravity model from CryoSat-2 and jason-1 reveals buried tectonic structure","volume":"346","author":"Sandwell","year":"2014","journal-title":"Science"},{"key":"10.1016\/j.comnet.2024.110466_b42","article-title":"Attention is all you need","volume":"vol. 30","author":"Vaswani","year":"2017"},{"issue":"9","key":"10.1016\/j.comnet.2024.110466_b43","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3560815","article-title":"Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing","volume":"55","author":"Liu","year":"2023","journal-title":"ACM Comput. Surv."},{"issue":"3","key":"10.1016\/j.comnet.2024.110466_b44","doi-asserted-by":"crossref","first-page":"331","DOI":"10.1007\/s41095-022-0271-y","article-title":"Attention mechanisms in computer vision: A survey","volume":"8","author":"Guo","year":"2022","journal-title":"Comput. Vis. Media"},{"key":"10.1016\/j.comnet.2024.110466_b45","doi-asserted-by":"crossref","first-page":"375","DOI":"10.1109\/TIP.2019.2928136","article-title":"Image compressed sensing using convolutional neural network","volume":"29","author":"Shi","year":"2020","journal-title":"IEEE Trans. Image Process."}],"container-title":["Computer Networks"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1389128624002986?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1389128624002986?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,11,18]],"date-time":"2024-11-18T06:08:27Z","timestamp":1731910107000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1389128624002986"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,6]]},"references-count":45,"alternative-id":["S1389128624002986"],"URL":"https:\/\/doi.org\/10.1016\/j.comnet.2024.110466","relation":{},"ISSN":["1389-1286"],"issn-type":[{"type":"print","value":"1389-1286"}],"subject":[],"published":{"date-parts":[[2024,6]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Volatility-based diversity awareness for distributed data storage of Mobile Crowd Sensing","name":"articletitle","label":"Article Title"},{"value":"Computer Networks","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.comnet.2024.110466","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"110466"}}