{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,16]],"date-time":"2024-08-16T06:30:53Z","timestamp":1723789853955},"reference-count":30,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,12,1]],"date-time":"2021-12-01T00:00:00Z","timestamp":1638316800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,12,1]],"date-time":"2021-12-01T00:00:00Z","timestamp":1638316800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,12,1]],"date-time":"2021-12-01T00:00:00Z","timestamp":1638316800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,12,1]],"date-time":"2021-12-01T00:00:00Z","timestamp":1638316800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,12,1]],"date-time":"2021-12-01T00:00:00Z","timestamp":1638316800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,12,1]],"date-time":"2021-12-01T00:00:00Z","timestamp":1638316800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computer Networks"],"published-print":{"date-parts":[[2021,12]]},"DOI":"10.1016\/j.comnet.2021.108608","type":"journal-article","created":{"date-parts":[[2021,11,9]],"date-time":"2021-11-09T08:30:31Z","timestamp":1636446631000},"page":"108608","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":2,"special_numbering":"C","title":["A DNN-based estimate of the PRACH traffic load for massive IoT scenarios in 5G networks and beyond"],"prefix":"10.1016","volume":"201","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-3960-3477","authenticated-orcid":false,"given":"Luciano","family":"Miuccio","sequence":"first","affiliation":[]},{"given":"Daniela","family":"Panno","sequence":"additional","affiliation":[]},{"given":"Salvatore","family":"Riolo","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.comnet.2021.108608_b1","series-title":"IMT vision - framework and overall objectives of the future development of IMT for 2020 and beyond","year":"2015"},{"issue":"3","key":"10.1016\/j.comnet.2021.108608_b2","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1109\/MCOM.001.1900411","article-title":"Toward 6G networks: Use cases and technologies","volume":"58","author":"Giordani","year":"2020","journal-title":"IEEE Commun. Mag."},{"key":"10.1016\/j.comnet.2021.108608_b3","doi-asserted-by":"crossref","first-page":"147029","DOI":"10.1109\/ACCESS.2020.3015289","article-title":"6G wireless systems: A vision, architectural elements, and future directions","volume":"8","author":"Khan","year":"2020","journal-title":"IEEE Access"},{"issue":"12","key":"10.1016\/j.comnet.2021.108608_b4","doi-asserted-by":"crossref","first-page":"12000","DOI":"10.1109\/TVT.2019.2947214","article-title":"DNN-aided block sparse Bayesian learning for user activity detection and channel estimation in grant-free non-orthogonal random access","volume":"68","author":"Zhang","year":"2019","journal-title":"IEEE Trans. Veh. Technol."},{"issue":"7","key":"10.1016\/j.comnet.2021.108608_b5","doi-asserted-by":"crossref","first-page":"4296","DOI":"10.1109\/TWC.2021.3057932","article-title":"Modeling and analysis of tagged preamble transmissions in random access procedure for mMTC scenarios","volume":"20","author":"Riolo","year":"2021","journal-title":"IEEE Trans. Wirel. Commun."},{"key":"10.1016\/j.comnet.2021.108608_b6","first-page":"1","article-title":"Joint control of random access and dynamic uplink resource dimensioning for massive MTC in 5G NR based on SCMA","author":"Miuccio","year":"2020","journal-title":"IEEE Internet Things J."},{"key":"10.1016\/j.comnet.2021.108608_b7","series-title":"2017 IEEE Wir. Comms. and Net. Conf. Works. (WCNCW)","first-page":"1","article-title":"A 5G lightweight connectionless protocol for massive cellular internet of things","author":"Tavares","year":"2017"},{"issue":"2","key":"10.1016\/j.comnet.2021.108608_b8","doi-asserted-by":"crossref","first-page":"168","DOI":"10.1109\/MCOM.2017.1500269CM","article-title":"Wide-area wireless communication challenges for the internet of things","volume":"55","author":"Dhillon","year":"2017","journal-title":"IEEE Commun. Mag."},{"key":"10.1016\/j.comnet.2021.108608_b9","doi-asserted-by":"crossref","first-page":"63745","DOI":"10.1109\/ACCESS.2019.2917618","article-title":"Performance study and enhancement of access barring for massive machine-type communications","volume":"7","author":"Vidal","year":"2019","journal-title":"IEEE Access"},{"issue":"12","key":"10.1016\/j.comnet.2021.108608_b10","doi-asserted-by":"crossref","first-page":"9847","DOI":"10.1109\/TVT.2016.2527601","article-title":"D-ACB: Adaptive congestion control algorithm for bursty M2M traffic in LTE networks","volume":"65","author":"Duan","year":"2016","journal-title":"IEEE Trans. Veh. Technol."},{"key":"10.1016\/j.comnet.2021.108608_b11","series-title":"2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall)","first-page":"1","article-title":"Joint random access control scheme based on PRACH channel quality and access class barring","author":"Tang","year":"2020"},{"key":"10.1016\/j.comnet.2021.108608_b12","doi-asserted-by":"crossref","first-page":"201345","DOI":"10.1109\/ACCESS.2020.3036398","article-title":"Dynamic backoff collision resolution for massive M2M random access in cellular IoT networks","volume":"8","author":"Althumali","year":"2020","journal-title":"IEEE Access"},{"issue":"4","key":"10.1016\/j.comnet.2021.108608_b13","doi-asserted-by":"crossref","first-page":"2560","DOI":"10.1109\/TVT.2015.2418811","article-title":"Estimation and adaptation for bursty LTE random access","volume":"65","author":"Lin","year":"2016","journal-title":"IEEE Trans. Veh. Technol."},{"issue":"2","key":"10.1016\/j.comnet.2021.108608_b14","doi-asserted-by":"crossref","first-page":"223","DOI":"10.1109\/TGCN.2017.2696367","article-title":"Contention tree-based access for wireless machine-to-machine networks with energy harvesting","volume":"1","author":"V\u00e1zquez-Gallego","year":"2017","journal-title":"IEEE Trans. Green Commun. Netw."},{"issue":"3","key":"10.1016\/j.comnet.2021.108608_b15","doi-asserted-by":"crossref","first-page":"668","DOI":"10.1109\/JSAC.2020.3018806","article-title":"A decoupled learning strategy for massive access optimization in cellular IoT networks","volume":"39","author":"Jiang","year":"2021","journal-title":"IEEE J. Sel. Areas Commun."},{"key":"10.1016\/j.comnet.2021.108608_b16","series-title":"Service accessibility","year":"2020"},{"issue":"5","key":"10.1016\/j.comnet.2021.108608_b17","doi-asserted-by":"crossref","first-page":"843","DOI":"10.1109\/LCOMM.2015.2413961","article-title":"Resource allocation in a new random access for M2M communications","volume":"19","author":"Zhang","year":"2015","journal-title":"IEEE Commun. Lett."},{"key":"#cr-split#-10.1016\/j.comnet.2021.108608_b18.1","doi-asserted-by":"crossref","unstructured":"L. Miuccio, D. Panno, S. Riolo, Dynamic uplink resource dimensioning for massive MTC in 5G networks based on SCMA, in: European Wireless 2019","DOI":"10.1109\/ConTEL.2019.8848540"},{"key":"#cr-split#-10.1016\/j.comnet.2021.108608_b18.2","unstructured":"25th European Wireless Conference, 2019, pp. 1-6."},{"issue":"3","key":"10.1016\/j.comnet.2021.108608_b19","doi-asserted-by":"crossref","first-page":"802","DOI":"10.1109\/LCOMM.2020.3040504","article-title":"A new contention-based PUSCH resource allocation in 5G NR for mMTC scenarios","volume":"25","author":"Miuccio","year":"2021","journal-title":"IEEE Commun. Lett."},{"issue":"10","key":"10.1016\/j.comnet.2021.108608_b20","doi-asserted-by":"crossref","first-page":"1778","DOI":"10.1109\/LCOMM.2019.2931693","article-title":"Online supervised learning for traffic load prediction in framed-ALOHA networks","volume":"23","author":"Jiang","year":"2019","journal-title":"IEEE Commun. Lett."},{"key":"10.1016\/j.comnet.2021.108608_b21","series-title":"NR; physical channels and modulation","year":"2020"},{"key":"10.1016\/j.comnet.2021.108608_b22","doi-asserted-by":"crossref","first-page":"146512","DOI":"10.1109\/ACCESS.2019.2946084","article-title":"Inter-numerology interference for beyond 5G","volume":"7","author":"Kihero","year":"2019","journal-title":"IEEE Access"},{"key":"10.1016\/j.comnet.2021.108608_b23","doi-asserted-by":"crossref","first-page":"13015","DOI":"10.1109\/ACCESS.2018.2800661","article-title":"Dynamic preamble subset allocation for RAN slicing in 5G networks","volume":"6","author":"Vural","year":"2018","journal-title":"IEEE Access"},{"key":"10.1016\/j.comnet.2021.108608_b24","series-title":"2017 IEEE 86th Vehicular Technology Conference (VTC-Fall)","first-page":"1","article-title":"Sparse code multiple access for 5G radio transmission","author":"Wu","year":"2017"},{"key":"10.1016\/j.comnet.2021.108608_b25","series-title":"2013 IEEE 24th Annual Intl. Sym. on PIMRC","first-page":"332","article-title":"Sparse code multiple access","author":"Nikopour","year":"2013"},{"key":"10.1016\/j.comnet.2021.108608_b26","first-page":"249","article-title":"Understanding the difficulty of training deep feedforward neural networks","volume":"9","author":"Glorot","year":"2010","journal-title":"J. Mach. Learn. Res. - Proc. Track"},{"key":"10.1016\/j.comnet.2021.108608_b27","article-title":"Batch-normalized deep neural networks for achieving fast intelligent fault diagnosis of machines","volume":"329","author":"Wang","year":"2018","journal-title":"Neurocomputing"},{"key":"10.1016\/j.comnet.2021.108608_b28","series-title":"Study on RAN improvements for machine-type communications","year":"2011"},{"issue":"8","key":"10.1016\/j.comnet.2021.108608_b29","doi-asserted-by":"crossref","first-page":"1745","DOI":"10.1109\/TMC.2018.2866249","article-title":"Classifying IoT devices in smart environments using network traffic characteristics","volume":"18","author":"Sivanathan","year":"2019","journal-title":"IEEE Trans. Mob. Comput."}],"container-title":["Computer Networks"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1389128621005077?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1389128621005077?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,4,2]],"date-time":"2023-04-02T21:41:17Z","timestamp":1680471677000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1389128621005077"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,12]]},"references-count":30,"alternative-id":["S1389128621005077"],"URL":"https:\/\/doi.org\/10.1016\/j.comnet.2021.108608","relation":{},"ISSN":["1389-1286"],"issn-type":[{"value":"1389-1286","type":"print"}],"subject":[],"published":{"date-parts":[[2021,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A DNN-based estimate of the PRACH traffic load for massive IoT scenarios in 5G networks and beyond","name":"articletitle","label":"Article Title"},{"value":"Computer Networks","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.comnet.2021.108608","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"108608"}}