{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T18:25:55Z","timestamp":1732040755406},"reference-count":50,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,10,1]],"date-time":"2021-10-01T00:00:00Z","timestamp":1633046400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,10,1]],"date-time":"2021-10-01T00:00:00Z","timestamp":1633046400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,10,1]],"date-time":"2021-10-01T00:00:00Z","timestamp":1633046400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,10,1]],"date-time":"2021-10-01T00:00:00Z","timestamp":1633046400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,10,1]],"date-time":"2021-10-01T00:00:00Z","timestamp":1633046400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,10,1]],"date-time":"2021-10-01T00:00:00Z","timestamp":1633046400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61472439"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012166","name":"National Key Research and Development Program of China","doi-asserted-by":"publisher","award":["2018YFB0204301"],"id":[{"id":"10.13039\/501100012166","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computer Networks"],"published-print":{"date-parts":[[2021,10]]},"DOI":"10.1016\/j.comnet.2021.108298","type":"journal-article","created":{"date-parts":[[2021,8,20]],"date-time":"2021-08-20T05:40:31Z","timestamp":1629438031000},"page":"108298","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":23,"special_numbering":"C","title":["Few-shot website fingerprinting attack"],"prefix":"10.1016","volume":"198","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-1300-2104","authenticated-orcid":false,"given":"Mantun","family":"Chen","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3257-539X","authenticated-orcid":false,"given":"Yongjun","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Hongzuo","family":"Xu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9284-2955","authenticated-orcid":false,"given":"Xiatian","family":"Zhu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"doi-asserted-by":"crossref","unstructured":"R. Dingledine, N. Mathewson, P. Syverson, Tor: The second-generation onion router, in: Proceedings of the 13th USENIX Security Symposium, 2004, pp. 303\u2013320.","key":"10.1016\/j.comnet.2021.108298_b1","DOI":"10.21236\/ADA465464"},{"year":"2018","series-title":"Tor metrics portal","key":"10.1016\/j.comnet.2021.108298_b2"},{"key":"10.1016\/j.comnet.2021.108298_b3","series-title":"IMC \u201918: Proceedings of the Internet Measurement Conference 2018","first-page":"175","article-title":"Understanding tor usage with privacy-preserving measurement","author":"Mani","year":"2018"},{"year":"1998","author":"Cheng","series-title":"Traffic analysis of ssl encrypted web browsing","key":"10.1016\/j.comnet.2021.108298_b4"},{"key":"10.1016\/j.comnet.2021.108298_b5","series-title":"IEEE International Conference on Cloud Computing Technology and Science","first-page":"31","article-title":"Website fingerprinting: Attacking popular privacy enhancing technologies with the multinomial Na\u00efve-Bayes classifier","author":"Herrmann","year":"2009"},{"key":"10.1016\/j.comnet.2021.108298_b6","series-title":"Privacy Enhancing Technologies","first-page":"171","article-title":"Fingerprinting websites using traffic analysis","author":"Hintz","year":"2003"},{"doi-asserted-by":"crossref","unstructured":"M. Liberatore, B.N. Levine, Inferring the source of encrypted HTTP connections, in: Proceedings of the 13th ACM Conference on Computer and Communications Security, 2006, pp. 255\u2013263.","key":"10.1016\/j.comnet.2021.108298_b7","DOI":"10.1145\/1180405.1180437"},{"key":"10.1016\/j.comnet.2021.108298_b8","series-title":"Privacy Enhancing Technologies, Vol. 3856","first-page":"1","article-title":"Privacy vulnerabilities in encrypted HTTP streams","author":"Bissias","year":"2006"},{"doi-asserted-by":"crossref","unstructured":"A. Panchenko, L. Niessen, A. Zinnen, T. Engel, Website fingerprinting in onion routing based anonymization networks, in: Proceedings of the ACM Workshop on Privacy in the Electronic Society, 2011, pp. 103\u2013114.","key":"10.1016\/j.comnet.2021.108298_b9","DOI":"10.1145\/2046556.2046570"},{"doi-asserted-by":"crossref","unstructured":"X. Cai, X.C. Zhang, B. Joshi, R. Johnson, Touching from a distance: website fingerprinting attacks and defenses, in: Preceeding of the ACM Conference on Computer and Communications Security, 2012, pp. 605\u2013616.","key":"10.1016\/j.comnet.2021.108298_b10","DOI":"10.1145\/2382196.2382260"},{"doi-asserted-by":"crossref","unstructured":"T. Wang, I. Goldberg, Improved website fingerprinting on tor, in: Proceedings of the ACM Workshop on Privacy in the Electronic Society, 2013, pp. 201\u2013212.","key":"10.1016\/j.comnet.2021.108298_b11","DOI":"10.1145\/2517840.2517851"},{"unstructured":"T. Wang, X. Cai, I. Johnson, Effective attacks and provable defenses for website fingerprinting, in: Proceedings of the 23rd USENIX Security Symposium, 2014, pp. 143\u2013157.","key":"10.1016\/j.comnet.2021.108298_b12"},{"unstructured":"J. Hayes, G. Danezis, k-fingerprinting: a robust scalable website fingerprinting technique, in: Proceddings of the 25th USEUIX Security Symposium, 2016, pp. 1187\u20131203.","key":"10.1016\/j.comnet.2021.108298_b13"},{"doi-asserted-by":"crossref","unstructured":"A. Panchenko, F. Lanze, M. Henze, Website fingerprinting at internet scale, in: Proceedings of the 16th Network and Distributed System Security Symposium, 2016.","key":"10.1016\/j.comnet.2021.108298_b14","DOI":"10.14722\/ndss.2016.23477"},{"key":"10.1016\/j.comnet.2021.108298_b15","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/nature14539","article-title":"Deep learning","volume":"521","author":"LeCun","year":"2015","journal-title":"Nature"},{"doi-asserted-by":"crossref","unstructured":"V. Rimmer, D. Preuveneers, M. Juarez, T. Van\u00a0Goethem, W. Joosen, Automated website fingerprinting through deep learning, in: Proceedings of the Network and Distributed System Security Symposium, 2018.","key":"10.1016\/j.comnet.2021.108298_b16","DOI":"10.14722\/ndss.2018.23105"},{"doi-asserted-by":"crossref","unstructured":"P. Sirinam, M. Imani, M. Juarez, M. Wright, Deep fingerprinting: Undermining website fingerprinting defenses with deep learning, in: Proceedings of the ACM Conference on Computer and Communications Security, 2018, pp. 1928\u20131943.","key":"10.1016\/j.comnet.2021.108298_b17","DOI":"10.1145\/3243734.3243768"},{"issue":"4","key":"10.1016\/j.comnet.2021.108298_b18","first-page":"292","article-title":"Var-CNN: A data-efficient website fingerprinting attack based on deep learning","volume":"2019","author":"Bhat","year":"2019","journal-title":"Proc. Priv. Enhanc. Technol."},{"doi-asserted-by":"crossref","unstructured":"P. Sirinam, N. Mathews, M.S. Rahman, M. Wright, Triplet fingerprinting: More practical and portable website fingerprinting with N-shot learning, in: Proceedings of the ACM Conference on Computer and Communications Security, 2019, pp. 1131\u20131148.","key":"10.1016\/j.comnet.2021.108298_b19","DOI":"10.1145\/3319535.3354217"},{"doi-asserted-by":"crossref","unstructured":"K.P. Dyer, S.E. Coull, T. Ristenpart, T. Shrimpton, Peek-a-boo, i still see you: Why efficient traffic analysis countermeasures fail, in: Proceedings of the 33rd Annual IEEE Symposium on Security and Privacy, 2012, pp. 332\u2013346.","key":"10.1016\/j.comnet.2021.108298_b20","DOI":"10.1109\/SP.2012.28"},{"doi-asserted-by":"crossref","unstructured":"X. Cai, R. Nithyanand, T. Wang, R. Johnson, I. Goldberg, A systematic approach to developing and evaluating website fingerprinting defenses, in: Proceedings of the ACM Conference on Computer and Communications Security, 2014, pp. 227\u2013238.","key":"10.1016\/j.comnet.2021.108298_b21","DOI":"10.1145\/2660267.2660362"},{"unstructured":"T. Wang, I. Goldberg, Walkie-talkie: An effective and efficient defense against website fingerprinting, in: Proceeding of the 26th USENIX Security Symposium, 2017, pp. 1375\u20131390.","key":"10.1016\/j.comnet.2021.108298_b22"},{"doi-asserted-by":"crossref","unstructured":"M. Juarez, M. Imani, M. Perry, C. Diaz, M. Wright, Toward an efficient website fingerprinting defense, in: Proceeding of the European Symposium on Research in Computer Security, Vol. 9878, 2016, pp. 27\u201346.","key":"10.1016\/j.comnet.2021.108298_b23","DOI":"10.1007\/978-3-319-45744-4_2"},{"key":"10.1016\/j.comnet.2021.108298_b24","series-title":"29th USENIX Security Symposium (USENIX Security 20)","first-page":"717","article-title":"Zero-delay lightweight defenses against website fingerprinting","author":"Gong","year":"2020"},{"doi-asserted-by":"crossref","unstructured":"W. De\u00a0la Cadena, A. Mitseva, J. Hiller, J. Pennekamp, S. Reuter, J. Filter, T. Engel, K. Wehrle, A. Panchenko, TrafficSliver: Fighting website fingerprinting attacks with traffic splitting, in: Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security, CCS \u201920, New York, NY, USA, 2020, pp. 1971\u20131985.","key":"10.1016\/j.comnet.2021.108298_b25","DOI":"10.1145\/3372297.3423351"},{"key":"10.1016\/j.comnet.2021.108298_b26","series-title":"Computer and Communications Security","article-title":"A critical evaluation of website fingerprinting attacks","author":"Juarez","year":"2014"},{"doi-asserted-by":"crossref","unstructured":"T. Wang, I. Goldberg, On realistically attacking tor with website fingerprinting, in: Proceedings on Privacy Enhancing Technologies (PoPETs), 2016, pp. 21\u201336.","key":"10.1016\/j.comnet.2021.108298_b27","DOI":"10.1515\/popets-2016-0027"},{"key":"10.1016\/j.comnet.2021.108298_b28","first-page":"2493","article-title":"Natural language processing (almost) from scratch","volume":"12","author":"Collobert","year":"2011","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.comnet.2021.108298_b29","series-title":"Imagenet classification with deep convolutional neural networks","first-page":"1097","author":"Krizhevsky","year":"2012"},{"key":"10.1016\/j.comnet.2021.108298_b30","doi-asserted-by":"crossref","first-page":"504","DOI":"10.1016\/j.patcog.2017.07.013","article-title":"Human action recognition in RGB-D videos using motion sequence information and deep learning","volume":"72","author":"Ijjina","year":"2017","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.comnet.2021.108298_b31","doi-asserted-by":"crossref","first-page":"629","DOI":"10.1016\/j.patcog.2017.09.042","article-title":"Active garment recognition and target grasping point detection using deep learning","volume":"74","author":"Corona","year":"2018","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.comnet.2021.108298_b32","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2019.106966","article-title":"Sparse deep feature learning for facial expression recognition","volume":"96","author":"Xie","year":"2019","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.comnet.2021.108298_b33","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2020.107353","article-title":"Timed-image based deep learning for action recognition in video sequences","volume":"104","author":"Atto","year":"2020","journal-title":"Pattern Recognit."},{"unstructured":"K. Abe, S. Goto, Fingerprinting attack on tor anonymity using deep learning, in: Proceedings of the Asia-Pacific Advanced Network Research Workshop, 2016, pp. 15\u201320.","key":"10.1016\/j.comnet.2021.108298_b34"},{"year":"2014","author":"Simonyan","series-title":"Very deep convolutional networks for large-scale image recognition","key":"10.1016\/j.comnet.2021.108298_b35"},{"key":"10.1016\/j.comnet.2021.108298_b36","series-title":"Computer Vision and Pattern Recognition","first-page":"770","article-title":"Deep residual learning for image recognition","author":"He","year":"2016"},{"year":"2016","author":"Den\u00a0Oord","series-title":"Wavenet: A generative model for raw audio","key":"10.1016\/j.comnet.2021.108298_b37"},{"unstructured":"E. Hoffer, N. Ailon, Deep metric learning using Triplet network, in: International Conference on Learning Representations.","key":"10.1016\/j.comnet.2021.108298_b38"},{"key":"10.1016\/j.comnet.2021.108298_b39","series-title":"International Conference on Machine Learning","first-page":"1126","article-title":"Model-agnostic meta-learning for fast adaptation of deep networks","author":"Finn","year":"2017"},{"doi-asserted-by":"crossref","unstructured":"Q. Sun, Y. Liu, T.-S. Chua, B. Schiele, Meta-transfer learning for few-shot learning, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 403\u2013412.","key":"10.1016\/j.comnet.2021.108298_b40","DOI":"10.1109\/CVPR.2019.00049"},{"doi-asserted-by":"crossref","unstructured":"J.-M. Perez-Rua, X. Zhu, T.M. Hospedales, T. Xiang, Incremental few-shot object detection, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 13846\u201313855.","key":"10.1016\/j.comnet.2021.108298_b41","DOI":"10.1109\/CVPR42600.2020.01386"},{"year":"2021","author":"Chen","series-title":"Few-shot website fingerprinting attack","key":"10.1016\/j.comnet.2021.108298_b42"},{"key":"10.1016\/j.comnet.2021.108298_b43","series-title":"ICML Deep Learning Workshop, Vol. 2","article-title":"Siamese neural networks for one-shot image recognition","author":"Koch","year":"2015"},{"year":"2018","author":"Agarap","series-title":"Deep learning using rectified linear units (ReLU)","key":"10.1016\/j.comnet.2021.108298_b44"},{"issue":"2","key":"10.1016\/j.comnet.2021.108298_b45","doi-asserted-by":"crossref","first-page":"271","DOI":"10.1111\/j.2517-6161.1989.tb01764.x","article-title":"Exact maximum a posteriori estimation for binary images","volume":"51","author":"Greig","year":"1989","journal-title":"J. R. Stat. Soc. Ser. B Stat. Methodol."},{"issue":"1","key":"10.1016\/j.comnet.2021.108298_b46","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1007\/s10107-010-0420-4","article-title":"Pegasos: primal estimated sub-gradient solver for SVM","volume":"127","author":"Shalev-Shwartz","year":"2011","journal-title":"Math. Program."},{"key":"10.1016\/j.comnet.2021.108298_b47","series-title":"Proceedings of the 25th International Conference on Machine Learning","first-page":"408","article-title":"A dual coordinate descent method for large-scale linear SVM","author":"Hsieh","year":"2008"},{"key":"10.1016\/j.comnet.2021.108298_b48","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2020.107422","article-title":"Face re-identification challenge: Are face recognition models good enough?","volume":"107","author":"Cheng","year":"2020","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.comnet.2021.108298_b49","first-page":"2825","article-title":"Scikit-learn: Machine learning in python","volume":"12","author":"Pedregosa","year":"2011","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.comnet.2021.108298_b50","series-title":"ECML PKDD Workshop: Languages for Data Mining and Machine Learning","first-page":"108","article-title":"API design for machine learning software: experiences from the scikit-learn project","author":"Buitinck","year":"2013"}],"container-title":["Computer Networks"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1389128621003108?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1389128621003108?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,9,6]],"date-time":"2024-09-06T22:55:27Z","timestamp":1725663327000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1389128621003108"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,10]]},"references-count":50,"alternative-id":["S1389128621003108"],"URL":"https:\/\/doi.org\/10.1016\/j.comnet.2021.108298","relation":{},"ISSN":["1389-1286"],"issn-type":[{"type":"print","value":"1389-1286"}],"subject":[],"published":{"date-parts":[[2021,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Few-shot website fingerprinting attack","name":"articletitle","label":"Article Title"},{"value":"Computer Networks","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.comnet.2021.108298","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"108298"}}