{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,4,6]],"date-time":"2024-04-06T00:28:46Z","timestamp":1712363326377},"reference-count":10,"publisher":"Elsevier BV","issue":"1","license":[{"start":{"date-parts":[[2014,1,1]],"date-time":"2014-01-01T00:00:00Z","timestamp":1388534400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2018,1,1]],"date-time":"2018-01-01T00:00:00Z","timestamp":1514764800000},"content-version":"vor","delay-in-days":1461,"URL":"https:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computational Geometry"],"published-print":{"date-parts":[[2014,1]]},"DOI":"10.1016\/j.comgeo.2013.07.002","type":"journal-article","created":{"date-parts":[[2013,7,16]],"date-time":"2013-07-16T17:33:05Z","timestamp":1373995985000},"page":"90-109","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":6,"title":["Minimum-area enclosing triangle with a fixed angle"],"prefix":"10.1016","volume":"47","author":[{"given":"Prosenjit","family":"Bose","sequence":"first","affiliation":[]},{"given":"Jean-Lou","family":"De Carufel","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.comgeo.2013.07.002_br0010","series-title":"CCCG","first-page":"171","article-title":"Minimum enclosing area triangle with a fixed angle","author":"Bose","year":"2010"},{"issue":"1","key":"10.1016\/j.comgeo.2013.07.002_br0020","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1142\/S0218195911003536","article-title":"On computing enclosing isosceles triangles and related problems","volume":"21","author":"Bose","year":"2011","journal-title":"Int. J. Comput. Geom. Appl."},{"key":"10.1016\/j.comgeo.2013.07.002_br0030","series-title":"Abstract Algebra","author":"Dummit","year":"2003"},{"key":"10.1016\/j.comgeo.2013.07.002_br0040","doi-asserted-by":"crossref","first-page":"119","DOI":"10.1016\/0925-7721(94)90003-5","article-title":"Computing the smallest k-enclosing circle and related problems","volume":"4","author":"Efrat","year":"1994","journal-title":"Comput. Geom."},{"issue":"3","key":"10.1016\/j.comgeo.2013.07.002_br0050","doi-asserted-by":"crossref","first-page":"359","DOI":"10.1016\/0196-6774(85)90005-7","article-title":"Finding the smallest triangles containing a given convex polygon","volume":"6","author":"Klee","year":"1985","journal-title":"J. Algorithms"},{"issue":"2","key":"10.1016\/j.comgeo.2013.07.002_br0060","doi-asserted-by":"crossref","first-page":"193","DOI":"10.1007\/BF01840442","article-title":"Complexity of some location problems","volume":"1","author":"Lee","year":"1986","journal-title":"Algorithmica"},{"issue":"4","key":"10.1016\/j.comgeo.2013.07.002_br0070","doi-asserted-by":"crossref","first-page":"217","DOI":"10.1016\/0020-0190(94)00190-A","article-title":"On enclosing k points by a circle","volume":"53","author":"Matousek","year":"1995","journal-title":"Inf. Process. Lett."},{"issue":"4","key":"10.1016\/j.comgeo.2013.07.002_br0080","doi-asserted-by":"crossref","first-page":"759","DOI":"10.1137\/0212052","article-title":"Linear-time algorithms for linear programming in R3 and related problems","volume":"12","author":"Megiddo","year":"1983","journal-title":"SIAM J. Comput."},{"issue":"2","key":"10.1016\/j.comgeo.2013.07.002_br0090","doi-asserted-by":"crossref","first-page":"258","DOI":"10.1016\/0196-6774(86)90007-6","article-title":"An optimal algorithm for finding minimal enclosing triangles","volume":"7","author":"O\u02bcRourke","year":"1986","journal-title":"J. Algorithms"},{"key":"10.1016\/j.comgeo.2013.07.002_br0100","series-title":"Results and New Trends in Computer Science","first-page":"359","article-title":"Smallest enclosing disks (balls and ellipsoids)","author":"Welzl","year":"1991"}],"container-title":["Computational Geometry"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S092577211300093X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S092577211300093X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2018,10,14]],"date-time":"2018-10-14T10:27:33Z","timestamp":1539512853000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S092577211300093X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2014,1]]},"references-count":10,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2014,1]]}},"alternative-id":["S092577211300093X"],"URL":"https:\/\/doi.org\/10.1016\/j.comgeo.2013.07.002","relation":{},"ISSN":["0925-7721"],"issn-type":[{"value":"0925-7721","type":"print"}],"subject":[],"published":{"date-parts":[[2014,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Minimum-area enclosing triangle with a fixed angle","name":"articletitle","label":"Article Title"},{"value":"Computational Geometry","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.comgeo.2013.07.002","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"Copyright \u00a9 2013 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}