{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,7]],"date-time":"2024-11-07T00:40:02Z","timestamp":1730940002578,"version":"3.28.0"},"reference-count":33,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,2,1]],"date-time":"2024-02-01T00:00:00Z","timestamp":1706745600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,2,1]],"date-time":"2024-02-01T00:00:00Z","timestamp":1706745600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,2,1]],"date-time":"2024-02-01T00:00:00Z","timestamp":1706745600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,2,1]],"date-time":"2024-02-01T00:00:00Z","timestamp":1706745600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,2,1]],"date-time":"2024-02-01T00:00:00Z","timestamp":1706745600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,2,1]],"date-time":"2024-02-01T00:00:00Z","timestamp":1706745600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["62072112"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100002858","name":"China Postdoctoral Science Foundation","doi-asserted-by":"publisher","award":["2023M730647","2023TQ0075"],"id":[{"id":"10.13039\/501100002858","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012166","name":"National Key Research and Development Program of China","doi-asserted-by":"publisher","award":["2020AAA0108301"],"id":[{"id":"10.13039\/501100012166","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100018625","name":"Science and Technology Innovation Plan Of Shanghai Science and Technology Commission","doi-asserted-by":"publisher","award":["22511102202"],"id":[{"id":"10.13039\/501100018625","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computer Communications"],"published-print":{"date-parts":[[2024,2]]},"DOI":"10.1016\/j.comcom.2023.12.031","type":"journal-article","created":{"date-parts":[[2023,12,28]],"date-time":"2023-12-28T16:31:38Z","timestamp":1703781098000},"page":"45-53","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Mixed noise-guided mutual constraint framework for unsupervised anomaly detection in smart industries"],"prefix":"10.1016","volume":"216","author":[{"ORCID":"http:\/\/orcid.org\/0009-0004-8319-5487","authenticated-orcid":false,"given":"Qing","family":"Zhao","sequence":"first","affiliation":[]},{"given":"Yan","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Yuxuan","family":"Lin","sequence":"additional","affiliation":[]},{"given":"Shaoqi","family":"Yan","sequence":"additional","affiliation":[]},{"given":"Wei","family":"Song","sequence":"additional","affiliation":[]},{"given":"Boyang","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Jun","family":"Huang","sequence":"additional","affiliation":[]},{"given":"Yang","family":"Chang","sequence":"additional","affiliation":[]},{"given":"Lizhe","family":"Qi","sequence":"additional","affiliation":[]},{"given":"Wenqiang","family":"Zhang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.comcom.2023.12.031_b1","doi-asserted-by":"crossref","first-page":"151","DOI":"10.1016\/j.comcom.2023.06.027","article-title":"AD2S: Adaptive anomaly detection on sporadic data streams","volume":"209","author":"Liu","year":"2023","journal-title":"Comput. Commun."},{"key":"10.1016\/j.comcom.2023.12.031_b2","doi-asserted-by":"crossref","first-page":"64","DOI":"10.1016\/j.inffus.2020.10.001","article-title":"Smart anomaly detection in sensor systems: A multi-perspective review","volume":"67","author":"Erhan","year":"2021","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.comcom.2023.12.031_b3","doi-asserted-by":"crossref","DOI":"10.1109\/TIM.2022.3196436","article-title":"Deep learning for unsupervised anomaly localization in industrial images: A survey","author":"Tao","year":"2022","journal-title":"IEEE Trans. Instrum. Meas."},{"year":"2023","series-title":"Deep industrial image anomaly detection: A survey","author":"Liu","key":"10.1016\/j.comcom.2023.12.031_b4"},{"key":"10.1016\/j.comcom.2023.12.031_b5","doi-asserted-by":"crossref","unstructured":"M. Salehi, N. Sadjadi, S. Baselizadeh, M.H. Rohban, H.R. Rabiee, Multiresolution knowledge distillation for anomaly detection, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 14902\u201314912.","DOI":"10.1109\/CVPR46437.2021.01466"},{"key":"10.1016\/j.comcom.2023.12.031_b6","doi-asserted-by":"crossref","unstructured":"J. Hou, Y. Zhang, Q. Zhong, D. Xie, S. Pu, H. Zhou, Divide-and-assemble: Learning block-wise memory for unsupervised anomaly detection, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, 2021, pp. 8791\u20138800.","DOI":"10.1109\/ICCV48922.2021.00867"},{"key":"10.1016\/j.comcom.2023.12.031_b7","unstructured":"C.-L. Li, K. Sohn, J. Yoon, T. Pfister, Cutpaste: Self-supervised learning for anomaly detection and localization, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 9664\u20139674."},{"key":"10.1016\/j.comcom.2023.12.031_b8","doi-asserted-by":"crossref","unstructured":"X. Zhang, S. Li, X. Li, P. Huang, J. Shan, T. Chen, DeSTSeg: Segmentation Guided Denoising Student-Teacher for Anomaly Detection, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 3914\u20133923.","DOI":"10.1109\/CVPR52729.2023.00381"},{"year":"2023","series-title":"FractalAD: A simple industrial anomaly segmentation method using fractal anomaly generation and backbone knowledge distillation","author":"Xia","key":"10.1016\/j.comcom.2023.12.031_b9"},{"key":"10.1016\/j.comcom.2023.12.031_b10","series-title":"Handbook of Video and Image Processing","article-title":"4.7 Statistical modeling of photographic images","volume":"Vol. 9","author":"Simoncelli","year":"2005"},{"key":"10.1016\/j.comcom.2023.12.031_b11","doi-asserted-by":"crossref","unstructured":"H. Kataoka, A. Matsumoto, R. Yamada, Y. Satoh, E. Yamagata, N. Inoue, Formula-driven supervised learning with recursive tiling patterns, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, 2021, pp. 4098\u20134105.","DOI":"10.1109\/ICCVW54120.2021.00455"},{"issue":"21","key":"10.1016\/j.comcom.2023.12.031_b12","doi-asserted-by":"crossref","first-page":"2705","DOI":"10.3390\/math9212705","article-title":"Performance of a novel chaotic firefly algorithm with enhanced exploration for tackling global optimization problems: Application for dropout regularization","volume":"9","author":"Bacanin","year":"2021","journal-title":"Mathematics"},{"key":"10.1016\/j.comcom.2023.12.031_b13","doi-asserted-by":"crossref","DOI":"10.1016\/j.scs.2020.102669","article-title":"COVID-19 cases prediction by using hybrid machine learning and beetle antennae search approach","volume":"66","author":"Zivkovic","year":"2021","journal-title":"Sustain. Cities Soc."},{"issue":"5","key":"10.1016\/j.comcom.2023.12.031_b14","doi-asserted-by":"crossref","first-page":"2538","DOI":"10.1007\/s40815-021-01191-x","article-title":"Artificial flora optimization algorithm with genetically guided operators for feature selection and neural network training","volume":"24","author":"Bacanin","year":"2022","journal-title":"Int. J. Fuzzy Syst."},{"key":"10.1016\/j.comcom.2023.12.031_b15","doi-asserted-by":"crossref","first-page":"2533","DOI":"10.1007\/s00521-018-3937-8","article-title":"A GA based hierarchical feature selection approach for handwritten word recognition","volume":"32","author":"Malakar","year":"2020","journal-title":"Neural Comput. Appl."},{"key":"10.1016\/j.comcom.2023.12.031_b16","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2023.109568","article-title":"Distributional and spatial-temporal robust representation learning for transportation activity recognition","volume":"140","author":"Liu","year":"2023","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.comcom.2023.12.031_b17","doi-asserted-by":"crossref","first-page":"109","DOI":"10.1016\/j.comcom.2023.03.028","article-title":"TraceGra: A trace-based anomaly detection for microservice using graph deep learning","volume":"204","author":"Chen","year":"2023","journal-title":"Comput. Commun."},{"key":"10.1016\/j.comcom.2023.12.031_b18","doi-asserted-by":"crossref","unstructured":"V. Zavrtanik, M. Kristan, D. Sko\u010daj, Draem-a discriminatively trained reconstruction embedding for surface anomaly detection, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, 2021, pp. 8330\u20138339.","DOI":"10.1109\/ICCV48922.2021.00822"},{"key":"10.1016\/j.comcom.2023.12.031_b19","series-title":"Image Analysis and Processing\u2013ICIAP 2022: 21st International Conference, Lecce, Italy, May 23\u201327, 2022, Proceedings, Part II","first-page":"394","article-title":"Inpainting transformer for anomaly detection","author":"Pirnay","year":"2022"},{"key":"10.1016\/j.comcom.2023.12.031_b20","doi-asserted-by":"crossref","unstructured":"J. Wyatt, A. Leach, S.M. Schmon, C.G. Willcocks, Anoddpm: Anomaly detection with denoising diffusion probabilistic models using simplex noise, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 650\u2013656.","DOI":"10.1109\/CVPRW56347.2022.00080"},{"key":"10.1016\/j.comcom.2023.12.031_b21","doi-asserted-by":"crossref","unstructured":"Y. Wang, Y. Sun, W. Song, S. Gao, Y. Huang, Z. Chen, W. Ge, W. Zhang, DPCNet: Dual Path Multi-Excitation Collaborative Network for Facial Expression Representation Learning in Videos, in: Proceedings of the 30th ACM International Conference on Multimedia, 2022, pp. 101\u2013110.","DOI":"10.1145\/3503161.3547865"},{"key":"10.1016\/j.comcom.2023.12.031_b22","doi-asserted-by":"crossref","first-page":"81","DOI":"10.1016\/j.comcom.2022.02.022","article-title":"IADF-CPS: Intelligent anomaly detection framework towards cyber physical systems","volume":"188","author":"Nagarajan","year":"2022","journal-title":"Comput. Commun."},{"key":"10.1016\/j.comcom.2023.12.031_b23","doi-asserted-by":"crossref","unstructured":"J. Yi, S. Yoon, Patch svdd: Patch-level svdd for anomaly detection and segmentation, in: Proceedings of the Asian Conference on Computer Vision, 2020.","DOI":"10.1007\/978-3-030-69544-6_23"},{"key":"10.1016\/j.comcom.2023.12.031_b24","doi-asserted-by":"crossref","unstructured":"T. Reiss, N. Cohen, L. Bergman, Y. Hoshen, Panda: Adapting pretrained features for anomaly detection and segmentation, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 2806\u20132814.","DOI":"10.1109\/CVPR46437.2021.00283"},{"key":"10.1016\/j.comcom.2023.12.031_b25","doi-asserted-by":"crossref","unstructured":"D. Gudovskiy, S. Ishizaka, K. Kozuka, Cflow-ad: Real-time unsupervised anomaly detection with localization via conditional normalizing flows, in: Proceedings of the IEEE\/CVF Winter Conference on Applications of Computer Vision, 2022, pp. 98\u2013107.","DOI":"10.1109\/WACV51458.2022.00188"},{"key":"10.1016\/j.comcom.2023.12.031_b26","doi-asserted-by":"crossref","unstructured":"P. Bergmann, M. Fauser, D. Sattlegger, C. Steger, Uninformed students: Student-teacher anomaly detection with discriminative latent embeddings, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 4183\u20134192.","DOI":"10.1109\/CVPR42600.2020.00424"},{"key":"10.1016\/j.comcom.2023.12.031_b27","doi-asserted-by":"crossref","unstructured":"H. Deng, X. Li, Anomaly detection via reverse distillation from one-class embedding, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 9737\u20139746.","DOI":"10.1109\/CVPR52688.2022.00951"},{"key":"10.1016\/j.comcom.2023.12.031_b28","doi-asserted-by":"crossref","unstructured":"T.D. Tien, A.T. Nguyen, N.H. Tran, T.D. Huy, S. Duong, C.D.T. Nguyen, S.Q. Truong, Revisiting reverse distillation for anomaly detection, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 24511\u201324520.","DOI":"10.1109\/CVPR52729.2023.02348"},{"year":"2022","series-title":"Asymmetric distillation post-segmentation method for image anomaly detection","author":"Xing","key":"10.1016\/j.comcom.2023.12.031_b29"},{"key":"10.1016\/j.comcom.2023.12.031_b30","first-page":"2556","article-title":"Learning to see by looking at noise","volume":"34","author":"Baradad Jurjo","year":"2021","journal-title":"Adv. Neural Inf. Process. Syst."},{"issue":"4","key":"10.1016\/j.comcom.2023.12.031_b31","doi-asserted-by":"crossref","first-page":"990","DOI":"10.1007\/s11263-021-01555-8","article-title":"Pre-training without natural images","volume":"130","author":"Hirokatsu","year":"2022","journal-title":"Int. J. Comput. Vis."},{"key":"10.1016\/j.comcom.2023.12.031_b32","doi-asserted-by":"crossref","unstructured":"P. Bergmann, M. Fauser, D. Sattlegger, C. Steger, MVTec AD\u2013A comprehensive real-world dataset for unsupervised anomaly detection, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 9592\u20139600.","DOI":"10.1109\/CVPR.2019.00982"},{"key":"10.1016\/j.comcom.2023.12.031_b33","doi-asserted-by":"crossref","first-page":"78446","DOI":"10.1109\/ACCESS.2022.3193699","article-title":"Cfa: Coupled-hypersphere-based feature adaptation for target-oriented anomaly localization","volume":"10","author":"Lee","year":"2022","journal-title":"IEEE Access"}],"container-title":["Computer Communications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0140366423004723?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0140366423004723?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,11,7]],"date-time":"2024-11-07T00:17:08Z","timestamp":1730938628000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0140366423004723"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,2]]},"references-count":33,"alternative-id":["S0140366423004723"],"URL":"https:\/\/doi.org\/10.1016\/j.comcom.2023.12.031","relation":{},"ISSN":["0140-3664"],"issn-type":[{"type":"print","value":"0140-3664"}],"subject":[],"published":{"date-parts":[[2024,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Mixed noise-guided mutual constraint framework for unsupervised anomaly detection in smart industries","name":"articletitle","label":"Article Title"},{"value":"Computer Communications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.comcom.2023.12.031","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}