{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,9]],"date-time":"2024-10-09T04:19:15Z","timestamp":1728447555737},"reference-count":63,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/100018384","name":"Directorate General for European Programmes, Coordination and Development","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100018384","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100007601","name":"Horizon 2020","doi-asserted-by":"publisher","award":["739578"],"id":[{"id":"10.13039\/501100007601","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100010661","name":"Horizon 2020 Framework Programme","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100010661","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computer Communications"],"published-print":{"date-parts":[[2023,1]]},"DOI":"10.1016\/j.comcom.2022.11.013","type":"journal-article","created":{"date-parts":[[2022,11,16]],"date-time":"2022-11-16T06:30:51Z","timestamp":1668580251000},"page":"32-51","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":16,"special_numbering":"C","title":["Detection of DDoS attacks in D2D communications using machine learning approach"],"prefix":"10.1016","volume":"198","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-2863-5465","authenticated-orcid":false,"given":"S.V. Jansi","family":"Rani","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1562-5543","authenticated-orcid":false,"given":"Iacovos","family":"Ioannou","sequence":"additional","affiliation":[]},{"given":"Prabagarane","family":"Nagaradjane","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1852-8642","authenticated-orcid":false,"given":"Christophoros","family":"Christophorou","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8647-0860","authenticated-orcid":false,"given":"Vasos","family":"Vassiliou","sequence":"additional","affiliation":[]},{"given":"Sai","family":"Charan","sequence":"additional","affiliation":[]},{"given":"Sai","family":"Prakash","sequence":"additional","affiliation":[]},{"given":"Niel","family":"Parekh","sequence":"additional","affiliation":[]},{"given":"Andreas","family":"Pitsillides","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"year":"2018","series-title":"DDoS attack types & mitigation methods. In incapsula","author":"Incapsula","key":"10.1016\/j.comcom.2022.11.013_b1"},{"issue":"3","key":"10.1016\/j.comcom.2022.11.013_b2","doi-asserted-by":"crossref","first-page":"4232","DOI":"10.1109\/JSYST.2020.2979044","article-title":"Distributed artificial intelligence solution for D2D communication in 5G networks","volume":"14","author":"Ioannou","year":"2020","journal-title":"IEEE Syst. J."},{"issue":"4","key":"10.1016\/j.comcom.2022.11.013_b3","doi-asserted-by":"crossref","first-page":"225","DOI":"10.4236\/jis.2018.94016","article-title":"Generation of DDoS attack dataset for effective IDS development and evaluation","volume":"9","year":"2018","journal-title":"J. Inform. Secur."},{"key":"10.1016\/j.comcom.2022.11.013_b4","doi-asserted-by":"crossref","unstructured":"L. Feinstein, D. Schnackenberg, R. Balupari, D. Kindred, Statistical approaches to DDoS attack detection and response, in: In Proceedings DARPA Information Survivability Conference and Expositionn Vol., 2003, pp. 303\u2013314.","DOI":"10.1109\/DISCEX.2003.1194894"},{"key":"10.1016\/j.comcom.2022.11.013_b5","doi-asserted-by":"crossref","unstructured":"C. Fu, Q. Li, M. Shen, K. Xu, Realtime Robust Malicious Traffic Detection via Frequency Domain Analysis, in: Proceedings of the ACM SIGSAC Conference on Computer and Communications Security, 2021, pp. 3431\u20133446.","DOI":"10.1145\/3460120.3484585"},{"key":"10.1016\/j.comcom.2022.11.013_b6","series-title":"2017 3rd International Conference of Cloud Computing Technologies and Applications","first-page":"1","article-title":"DDoS attack detection using machine learning techniques in cloud computing environments","author":"Zekri","year":"2017"},{"key":"10.1016\/j.comcom.2022.11.013_b7","series-title":"Rd International Conference of Cloud Computing Technologies and Applications, Vol. 2017, no. 3","first-page":"1","article-title":"DDoS attack detection using machine learning techniques in cloud computing environments","author":"Zekri","year":"2017"},{"key":"10.1016\/j.comcom.2022.11.013_b8","series-title":"7th International Conference on Computing for Sustainable Global Development","first-page":"16","article-title":"Detection of DDoS attacks using machine learning algorithms","author":"Saini","year":"2020"},{"key":"10.1016\/j.comcom.2022.11.013_b9","series-title":"Amity International Conference on Artificial Intelligence","first-page":"870","article-title":"Analysis and detection of DDoS attacks on cloud computing environment using machine learning techniques","author":"Wani","year":"2019"},{"key":"10.1016\/j.comcom.2022.11.013_b10","doi-asserted-by":"crossref","unstructured":"M. Suresh, R. Anitha, Evaluating machine learning algorithms for detecting DDoS attacks, in: International Conference on Network Security and Applications, Heidelberg, Springer, Berlin, pp. 441\u2013452.","DOI":"10.1007\/978-3-642-22540-6_42"},{"key":"10.1016\/j.comcom.2022.11.013_b11","series-title":"International Forum on Digital TV and Wireless Multimedia Communications","first-page":"205","article-title":"DDoS attacks detection using machine learning algorithms","author":"Li","year":"2018"},{"key":"10.1016\/j.comcom.2022.11.013_b12","doi-asserted-by":"crossref","first-page":"385","DOI":"10.1016\/j.neucom.2015.04.101","article-title":"Detection of known and unknown DDoS attacks using artificial neural networks","volume":"172","author":"Saied","year":"2016","journal-title":"Neurocomputing"},{"issue":"3","key":"10.1016\/j.comcom.2022.11.013_b13","doi-asserted-by":"crossref","first-page":"1659","DOI":"10.1016\/j.eswa.2007.01.040","article-title":"DDoS attack detection method using cluster analysis","volume":"34","author":"Lee","year":"2008","journal-title":"Expert Syst. Appl."},{"issue":"9","key":"10.1016\/j.comcom.2022.11.013_b14","doi-asserted-by":"crossref","first-page":"1137","DOI":"10.1016\/j.jpdc.2006.04.007","article-title":"Collaborative detection and filtering of shrew DDoS attacks using spectral analysis","volume":"66","author":"Chen","year":"2006","journal-title":"J. Parallel Distrib. Comput."},{"key":"10.1016\/j.comcom.2022.11.013_b15","series-title":"Conference on Smart Computing","first-page":"1","article-title":"Deepdefense: Identifying DDoS attack via deep learning","author":"Yuan","year":"2017"},{"key":"10.1016\/j.comcom.2022.11.013_b16","first-page":"555","article-title":"Attack in smartphone Wi-Fi access channel: State of the art, current issues, and challenges","author":"Sharma","year":"2018","journal-title":"Next-Gener. Netw."},{"year":"2020","series-title":"IoT-MQTT Based Denial of Service Attack Modelling and Detection","author":"Syed","key":"10.1016\/j.comcom.2022.11.013_b17"},{"year":"2018","series-title":"An Ensemble of Autoencoders for Online Network Intrusion Detection","author":"Mirsky","key":"10.1016\/j.comcom.2022.11.013_b18"},{"key":"10.1016\/j.comcom.2022.11.013_b19","unstructured":"J. Xing, W. Wu, A. Chen, Ripple: A programmable, decentralized link-flooding defense against adaptive adversaries, in: Proceedings of the 30th USENIX Security Symposium, USENIX Security Symposium, 2021, pp. 3865\u20133880."},{"key":"10.1016\/j.comcom.2022.11.013_b20","series-title":"Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security","first-page":"3431","article-title":"Realtime robust malicious traffic detection via frequency domain analysis","author":"Fu","year":"2021"},{"first-page":"38","year":"2020","series-title":"Denial of service attack on D2D communication for 4G, 1","author":"Alqahtani","key":"10.1016\/j.comcom.2022.11.013_b21"},{"key":"10.1016\/j.comcom.2022.11.013_b22","series-title":"2014 IEEE 11th Consumer Communications and Networking Conference","first-page":"507","article-title":"A study of stealthy Denial-of-Service attacks in Wi-Fi Direct Device-to-Device networks","author":"Hadiks","year":"2014"},{"first-page":"239","year":"2020","series-title":"Prevention of denial-of-service attacks in 5G D2D wireless communication networks","author":"Barik","key":"10.1016\/j.comcom.2022.11.013_b23"},{"key":"10.1016\/j.comcom.2022.11.013_b24","series-title":"IEEE Th Consumer Communications and Networking Conference, Vol. 11","first-page":"507","article-title":"A study of stealthy denial-of-service attacks in Wi-Fi direct device-to-device networks","author":"Hadiks","year":"2014"},{"year":"2022","series-title":"Detection of DDoS attacks in D2D communications using machine learning and cloud computing - SlowLoris DataSet (available after publication!)","author":"DataSet","key":"10.1016\/j.comcom.2022.11.013_b25"},{"key":"10.1016\/j.comcom.2022.11.013_b26","series-title":"Developing Realistic Distributed Denial of Service (DDoS) Attack Dataset and Taxonomy","first-page":"1","article-title":"Developing realistic distributed denial of service (DDoS) attack dataset and taxonomy","author":"Sharafaldin","year":"2019"},{"key":"10.1016\/j.comcom.2022.11.013_b27","doi-asserted-by":"crossref","first-page":"379","DOI":"10.1016\/j.eswa.2004.05.016","article-title":"Constructing detection knowledge for DDoS intrusion tolerance","volume":"27","author":"Lin","year":"2004","journal-title":"Expert Syst. Appl."},{"issue":"7","key":"10.1016\/j.comcom.2022.11.013_b28","doi-asserted-by":"crossref","first-page":"13","DOI":"10.1016\/S1353-4858(18)30069-2","article-title":"DDoS attacks: Past, present and future","volume":"2018","author":"Chadd","year":"2018","journal-title":"Netw. Secur."},{"key":"10.1016\/j.comcom.2022.11.013_b29","series-title":"InInternational Conference on Advances in Computing, Communications and Informatics","first-page":"318","article-title":"Performance comparison and analysis of slowloris, goldeneye and xerxes DDoS attack tools","author":"Shorey","year":"2018"},{"key":"10.1016\/j.comcom.2022.11.013_b30","article-title":"Feature selection using random forest","volume":"27","author":"Dubey","year":"2021","journal-title":"Towards Data Sci. (N.D.)"},{"key":"10.1016\/j.comcom.2022.11.013_b31","doi-asserted-by":"crossref","first-page":"321","DOI":"10.1613\/jair.953","article-title":"SMOTE: Synthetic minority over-sampling technique","volume":"16","author":"Chawla","year":"2002","journal-title":"J. Artificial Intelligence Res."},{"key":"10.1016\/j.comcom.2022.11.013_b32","series-title":"International conference on intelligent computing","first-page":"878","article-title":"Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning","author":"Han","year":"2005"},{"volume":"vol. 3644 Vol. LNCS","article-title":"Improvement of HITS for topic-specific web crawler","year":"2005","author":"Zong","key":"10.1016\/j.comcom.2022.11.013_b33"},{"key":"10.1016\/j.comcom.2022.11.013_b34","doi-asserted-by":"crossref","first-page":"863","DOI":"10.1613\/jair.1.11192","article-title":"SMOTE for learning from imbalanced data: Progress and challenges, marking the 15-year anniversary","volume":"61","author":"Fern\u00e1ndez","year":"2018","journal-title":"J. Artificial Intelligence Res."},{"key":"10.1016\/j.comcom.2022.11.013_b35","first-page":"1","article-title":"A novel ensemble method for imbalanced data learning","volume":"2017","author":"Wang","year":"2017","journal-title":"Comput. Intell. Neurosci."},{"key":"10.1016\/j.comcom.2022.11.013_b36","series-title":"Proceedings - 2014 International Conference on Identification","first-page":"34","article-title":"An improved SMOTE imbalanced data classification method based on support degree","author":"Li","year":"2014"},{"key":"10.1016\/j.comcom.2022.11.013_b37","unstructured":"W. Juanjuan, X. Mantao, W. Hui, Z. Jiwu, Classification of imbalanced data by using the SMOTE algorithm and locally linear embedding, in: International Conference on Signal Processing Proceedings, Vol. 3(x), ICSP, 2007, pp. 11\u201314."},{"key":"10.1016\/j.comcom.2022.11.013_b38","doi-asserted-by":"crossref","first-page":"1909","DOI":"10.1007\/s00500-010-0625-8","article-title":"Addressing data complexity for imbalanced data sets: Analysis of SMOTE-based oversampling and evolutionary undersampling","volume":"15","author":"Luengo","year":"2011","journal-title":"Soft Comput."},{"key":"10.1016\/j.comcom.2022.11.013_b39","series-title":"20th European Symposium on Artificial Neural Networks","first-page":"441","article-title":"The \u2018K\u2019in K-fold cross validation","author":"Anguita","year":"2012"},{"issue":"1","key":"10.1016\/j.comcom.2022.11.013_b40","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","article-title":"Random forests","volume":"45","author":"Breiman","year":"2001","journal-title":"Mach. Learn."},{"issue":"1","key":"10.1016\/j.comcom.2022.11.013_b41","doi-asserted-by":"crossref","first-page":"118","DOI":"10.1198\/106186006X94072","article-title":"Unsupervised learning with random forest predictors","volume":"15","author":"Shi","year":"2006","journal-title":"J. Comput. Graph. Statist."},{"issue":"8","key":"10.1016\/j.comcom.2022.11.013_b42","doi-asserted-by":"crossref","first-page":"2681","DOI":"10.1177\/0142331217708242","article-title":"Comparison of random forest, artificial neural networks and support vector machine for intelligent diagnosis of rotating machinery","volume":"40","author":"Han","year":"2018","journal-title":"Trans. Inst. Meas. Control"},{"issue":"12","key":"10.1016\/j.comcom.2022.11.013_b43","first-page":"1","article-title":"Impact of different data types on classifier performance of random forest, Na\u00efve Bayes, and K-nearest neighbors algorithms","volume":"8","author":"Singh","year":"2017","journal-title":"Int. J. Adv. Comput. Sci. Appl."},{"issue":"2","key":"10.1016\/j.comcom.2022.11.013_b44","doi-asserted-by":"crossref","first-page":"330","DOI":"10.1016\/j.patcog.2010.08.011","article-title":"Mining data with random forests: A survey and results of new tests","volume":"44","author":"Verikas","year":"2011","journal-title":"Pattern Recognit."},{"issue":"1","key":"10.1016\/j.comcom.2022.11.013_b45","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s42400-021-00103-8","article-title":"Performance analysis of machine learning models for intrusion detection system using Gini Impurity-based Weighted Random Forest (GIWRF) feature selection technique","volume":"5","author":"Disha","year":"2022","journal-title":"Cybersecurity"},{"key":"10.1016\/j.comcom.2022.11.013_b46","doi-asserted-by":"crossref","unstructured":"T. Chen, C..A. Guestrin, XGBoost: A Scalable Tree Boosting System, in: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, 2016, pp. 785\u2013794.","DOI":"10.1145\/2939672.2939785"},{"key":"10.1016\/j.comcom.2022.11.013_b47","doi-asserted-by":"crossref","DOI":"10.1016\/j.compmedimag.2021.102026","article-title":"Unified focal loss: Generalising dice and cross entropy-based losses to handle class imbalanced medical image segmentation","volume":"95","author":"Yeung","year":"2022","journal-title":"Comput. Med. Imaging Graph."},{"key":"10.1016\/j.comcom.2022.11.013_b48","series-title":"Empirical Inference","first-page":"37","article-title":"Explaining adaboost","author":"Schapire","year":"2013"},{"issue":"3","key":"10.1016\/j.comcom.2022.11.013_b49","doi-asserted-by":"crossref","first-page":"349","DOI":"10.4310\/SII.2009.v2.n3.a8","article-title":"Multi-class adaboost","volume":"2","author":"Hastie","year":"2009","journal-title":"Stat. Interface"},{"issue":"108","key":"10.1016\/j.comcom.2022.11.013_b50","first-page":"1840","article-title":"Light gradient boosting machine for general sentiment classification on short texts: A comparative evaluation","volume":"8","author":"Alzamzami","year":"2020","journal-title":"IEEE Access"},{"key":"10.1016\/j.comcom.2022.11.013_b51","doi-asserted-by":"crossref","first-page":"25579","DOI":"10.1109\/ACCESS.2020.2971354","article-title":"An intelligent approach to credit card fraud detection using an optimized light gradient boosting machine","volume":"8","author":"Taha","year":"2020","journal-title":"IEEE Access"},{"issue":"217","key":"10.1016\/j.comcom.2022.11.013_b52","first-page":"1","article-title":"Secure D2D communication\u00a0\u00a0\u00a0for\u00a0\u00a0\u00a05G\u00a0\u00a0\u00a0IoT\u00a0\u00a0\u00a0network\u00a0\u00a0\u00a0based\u00a0\u00a0\u00a0on\u00a0\u00a0\u00a0lightweight\u00a0\u00a0\u00a0cryptography","volume":"10","author":"Seok","year":"2020","journal-title":"Appl. Sci. (Switzerland)"},{"issue":"2","key":"10.1016\/j.comcom.2022.11.013_b53","doi-asserted-by":"crossref","first-page":"2922","DOI":"10.1109\/JIOT.2018.2877174","article-title":"Security analysis of mobile device-to-device network applications","volume":"6","author":"Liu","year":"2019","journal-title":"IEEE Internet Things J."},{"issue":"4","key":"10.1016\/j.comcom.2022.11.013_b54","doi-asserted-by":"crossref","first-page":"2659","DOI":"10.1109\/TVT.2015.2416002","article-title":"SeDS: Secure data sharing strategy for D2D communication in LTE-advanced networks","volume":"65","author":"Zhang","year":"2016","journal-title":"IEEE Trans. Veh. Technol."},{"issue":"1","key":"10.1016\/j.comcom.2022.11.013_b55","doi-asserted-by":"crossref","first-page":"156","DOI":"10.1007\/s13198-021-01323-4","article-title":"Machine learning with digital forensics for attack classification in cloud network environment","volume":"13","author":"Sachdeva","year":"2022","journal-title":"Int. J. Syst. Assur. Eng. Manag."},{"issue":"1","key":"10.1016\/j.comcom.2022.11.013_b56","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s10922-021-09633-5","article-title":"Machine-learning-enabled DDoS attacks detection in P4 programmable networks","volume":"30","author":"Musumeci","year":"2022","journal-title":"J. Netw. Syst. Manage."},{"journal-title":"J. Inform. Knowl. Manag.","article-title":"A hybrid detection system for DDoS attacks based on deep sparse autoencoder and light gradient boost machine","year":"2022","author":"Batchu","key":"10.1016\/j.comcom.2022.11.013_b57"},{"key":"10.1016\/j.comcom.2022.11.013_b58","first-page":"1","article-title":"DT-model: A classification model for distributed denial of service attacks and flash events","author":"Tinubu","year":"2022","journal-title":"Int. J. Inform. Technol."},{"key":"10.1016\/j.comcom.2022.11.013_b59","unstructured":"Cross-validation in machine learning: How to do it right - neptune.ai, \u2018 URL https:\/\/neptune.ai\/blog\/cross-validation-in-machine-learning-how-to-do-it-right."},{"key":"10.1016\/j.comcom.2022.11.013_b60","series-title":"Encyclopedia of Database Systems","first-page":"532","article-title":"Cross-validation","author":"Refaeilzadeh","year":"2009"},{"key":"10.1016\/j.comcom.2022.11.013_b61","unstructured":"Machine learning model validation - the data-centric approach, URL https:\/\/appen.com\/blog\/machine-learning-model-validation\/."},{"key":"10.1016\/j.comcom.2022.11.013_b62","unstructured":"15.3. Cross-validation \u2014 Principles and techniques of data science, URL https:\/\/www.samlau.me\/test-textbook\/ch\/15\/bias_cv.html."},{"first-page":"1","year":"2013","series-title":"Applied Predictive Modeling","author":"Kuhn","key":"10.1016\/j.comcom.2022.11.013_b63"}],"container-title":["Computer Communications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0140366422004364?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0140366422004364?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,10,8]],"date-time":"2024-10-08T08:22:05Z","timestamp":1728375725000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0140366422004364"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,1]]},"references-count":63,"alternative-id":["S0140366422004364"],"URL":"https:\/\/doi.org\/10.1016\/j.comcom.2022.11.013","relation":{},"ISSN":["0140-3664"],"issn-type":[{"type":"print","value":"0140-3664"}],"subject":[],"published":{"date-parts":[[2023,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Detection of DDoS attacks in D2D communications using machine learning approach","name":"articletitle","label":"Article Title"},{"value":"Computer Communications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.comcom.2022.11.013","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}