{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,26]],"date-time":"2024-11-26T05:14:35Z","timestamp":1732598075901,"version":"3.28.0"},"reference-count":50,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2025,1,1]],"date-time":"2025-01-01T00:00:00Z","timestamp":1735689600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2025,1,1]],"date-time":"2025-01-01T00:00:00Z","timestamp":1735689600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2025,11,15]],"date-time":"2025-11-15T00:00:00Z","timestamp":1763164800000},"content-version":"am","delay-in-days":318,"URL":"http:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"},{"start":{"date-parts":[[2025,1,1]],"date-time":"2025-01-01T00:00:00Z","timestamp":1735689600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2025,1,1]],"date-time":"2025-01-01T00:00:00Z","timestamp":1735689600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2025,1,1]],"date-time":"2025-01-01T00:00:00Z","timestamp":1735689600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2025,1,1]],"date-time":"2025-01-01T00:00:00Z","timestamp":1735689600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2025,1,1]],"date-time":"2025-01-01T00:00:00Z","timestamp":1735689600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Communications in Nonlinear Science and Numerical Simulation"],"published-print":{"date-parts":[[2025,1]]},"DOI":"10.1016\/j.cnsns.2024.108434","type":"journal-article","created":{"date-parts":[[2024,11,7]],"date-time":"2024-11-07T00:03:19Z","timestamp":1730937799000},"page":"108434","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"P2","title":["Accelerating the convergence of Newton\u2019s method for nonlinear elliptic PDEs using Fourier neural operators"],"prefix":"10.1016","volume":"140","author":[{"given":"Joubine","family":"Aghili","sequence":"first","affiliation":[]},{"given":"Emmanuel","family":"Franck","sequence":"additional","affiliation":[]},{"given":"Romain","family":"Hild","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3859-8517","authenticated-orcid":false,"given":"Victor","family":"Michel-Dansac","sequence":"additional","affiliation":[]},{"given":"Vincent","family":"Vigon","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"2","key":"10.1016\/j.cnsns.2024.108434_b1","doi-asserted-by":"crossref","first-page":"357","DOI":"10.1016\/j.jcp.2003.08.010","article-title":"Jacobian-free Newton\u2013Krylov methods: a survey of approaches and applications","volume":"193","author":"Knoll","year":"2004","journal-title":"J Comput Phys"},{"issue":"4","key":"10.1016\/j.cnsns.2024.108434_b2","doi-asserted-by":"crossref","first-page":"A1761","DOI":"10.1137\/120896918","article-title":"Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs","volume":"35","author":"Ern","year":"2013","journal-title":"SIAM J Sci Comput"},{"issue":"1","key":"10.1016\/j.cnsns.2024.108434_b3","doi-asserted-by":"crossref","first-page":"16","DOI":"10.1137\/0917003","article-title":"Choosing the forcing terms in an inexact Newton method","volume":"17","author":"Eisenstat","year":"1996","journal-title":"SIAM J Sci Comput"},{"issue":"1","key":"10.1016\/j.cnsns.2024.108434_b4","doi-asserted-by":"crossref","first-page":"47","DOI":"10.1016\/j.cam.2005.12.030","article-title":"A choice of forcing terms in inexact Newton method","volume":"200","author":"An","year":"2007","journal-title":"J Comput Appl Math"},{"issue":"1","key":"10.1016\/j.cnsns.2024.108434_b5","doi-asserted-by":"crossref","first-page":"193","DOI":"10.1007\/s10479-007-0196-y","article-title":"A globally convergent inexact Newton method with a new choice for the forcing term","volume":"157","author":"Gomes-Ruggiero","year":"2007","journal-title":"Ann Oper Res"},{"issue":"5","key":"10.1016\/j.cnsns.2024.108434_b6","doi-asserted-by":"crossref","first-page":"1331","DOI":"10.1051\/m2an\/2015014","article-title":"Energy conservation and numerical stability for the reduced MHD models of the non-linear JOREK code","volume":"49","author":"Franck","year":"2015","journal-title":"ESAIM: M2AN"},{"issue":"7","key":"10.1016\/j.cnsns.2024.108434_b7","doi-asserted-by":"crossref","first-page":"2724","DOI":"10.1016\/j.jcp.2011.11.040","article-title":"An asymptotic-preserving method for highly anisotropic elliptic equations based on a Micro\u2013Macro decomposition","volume":"231","author":"Degond","year":"2012","journal-title":"J Comput Phys"},{"issue":"1","key":"10.1016\/j.cnsns.2024.108434_b8","doi-asserted-by":"crossref","first-page":"434","DOI":"10.1137\/17M115205X","article-title":"A two field iterated asymptotic-preserving method for highly anisotropic elliptic equations","volume":"17","author":"Deluzet","year":"2019","journal-title":"Multiscale Model Simul"},{"key":"10.1016\/j.cnsns.2024.108434_b9","doi-asserted-by":"crossref","first-page":"555","DOI":"10.1016\/j.jcp.2013.10.052","article-title":"Fluid preconditioning for Newton\u2013Krylov-based, fully implicit, electrostatic particle-in-cell simulations","volume":"258","author":"Chen","year":"2014","journal-title":"J Comput Phys"},{"issue":"3","key":"10.1016\/j.cnsns.2024.108434_b10","doi-asserted-by":"crossref","first-page":"450","DOI":"10.1137\/0911026","article-title":"Hybrid Krylov methods for nonlinear systems of equations","volume":"11","author":"Brown","year":"1990","journal-title":"SIAM J Sci Stat Comput"},{"issue":"4","key":"10.1016\/j.cnsns.2024.108434_b11","doi-asserted-by":"crossref","first-page":"700","DOI":"10.1137\/S0036144504443511","article-title":"Globalization techniques for Newton\u2013Krylov methods and applications to the fully coupled solution of the Navier\u2013Stokes equations","volume":"48","author":"Pawlowski","year":"2006","journal-title":"SIAM Rev"},{"issue":"2","key":"10.1016\/j.cnsns.2024.108434_b12","doi-asserted-by":"crossref","first-page":"226","DOI":"10.1137\/1011036","article-title":"Convergence conditions for Ascent methods","volume":"11","author":"Wolfe","year":"1969","journal-title":"SIAM Rev"},{"key":"10.1016\/j.cnsns.2024.108434_b13","doi-asserted-by":"crossref","first-page":"163","DOI":"10.1016\/j.jcp.2014.06.061","article-title":"A posteriori error estimates, stopping criteria, and adaptivity for multiphase compositional Darcy flows in porous media","volume":"276","author":"Di Pietro","year":"2014","journal-title":"J Comput Phys"},{"issue":"12","key":"10.1016\/j.cnsns.2024.108434_b14","doi-asserted-by":"crossref","first-page":"2331","DOI":"10.1016\/j.camwa.2014.08.008","article-title":"An a posteriori-based, fully adaptive algorithm with adaptive stopping criteria and mesh refinement for thermal multiphase compositional flows in porous media","volume":"68","author":"Di Pietro","year":"2014","journal-title":"Comput Math Appl"},{"issue":"1","key":"10.1016\/j.cnsns.2024.108434_b15","doi-asserted-by":"crossref","first-page":"183","DOI":"10.1137\/S106482750037620X","article-title":"Nonlinearly preconditioned inexact Newton algorithms","volume":"24","author":"Cai","year":"2002","journal-title":"SIAM J Sci Comput"},{"issue":"6","key":"10.1016\/j.cnsns.2024.108434_b16","doi-asserted-by":"crossref","first-page":"A3357","DOI":"10.1137\/15M102887X","article-title":"Nonlinear preconditioning: How to use a nonlinear Schwarz method to precondition Newton\u2019s method","volume":"38","author":"Dolean","year":"2016","journal-title":"SIAM J Sci Comput"},{"issue":"1","key":"10.1016\/j.cnsns.2024.108434_b17","article-title":"Fully-coupled multi-physical simulation with physics-based nonlinearity-elimination preconditioned inexact Newton method for enhanced oil recovery","volume":"25","author":"Tang","year":"2019","journal-title":"Commun Comput Phys"},{"key":"10.1016\/j.cnsns.2024.108434_b18","doi-asserted-by":"crossref","first-page":"69","DOI":"10.1016\/j.camwa.2022.04.013","article-title":"Choice of an initial guess for Newton\u2019s method to solve nonlinear differential equations","volume":"117","author":"Choi","year":"2022","journal-title":"Comput Math Appl"},{"key":"10.1016\/j.cnsns.2024.108434_b19","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.cam.2016.06.022","article-title":"Newton\u2019s algorithm for magnetohydrodynamic equations with the initial guess from Stokes-like problem","volume":"309","author":"Kim","year":"2017","journal-title":"J Comput Appl Math"},{"key":"10.1016\/j.cnsns.2024.108434_b20","doi-asserted-by":"crossref","DOI":"10.1016\/j.jcp.2020.109675","article-title":"Int-deep: A deep learning initialized iterative method for nonlinear problems","volume":"419","author":"Huang","year":"2020","journal-title":"J Comput Phys"},{"issue":"10","key":"10.1016\/j.cnsns.2024.108434_b21","doi-asserted-by":"crossref","first-page":"2381","DOI":"10.1002\/nme.6943","article-title":"DeepPhysics: A physics aware deep learning framework for real-time simulation","volume":"123","author":"Odot","year":"2022","journal-title":"Internat J Numer Methods Engrg"},{"issue":"2","key":"10.1016\/j.cnsns.2024.108434_b22","doi-asserted-by":"crossref","first-page":"A849","DOI":"10.1137\/22M1507942","article-title":"PINL : Preconditioned inexact Newton with learning capability for nonlinear system of equations","volume":"45","author":"Luo","year":"2023","journal-title":"SIAM J Sci Comput"},{"key":"10.1016\/j.cnsns.2024.108434_b23","doi-asserted-by":"crossref","DOI":"10.1016\/j.jcp.2023.112700","article-title":"Accelerating hypersonic reentry simulations using deep learning-based hybridization (with guarantees)","volume":"498","author":"Novello","year":"2024","journal-title":"J Comput Phys"},{"issue":"6","key":"10.1016\/j.cnsns.2024.108434_b24","doi-asserted-by":"crossref","DOI":"10.1088\/1741-4326\/abf99f","article-title":"The JOREK non-linear extended MHD code and applications to large-scale instabilities and their control in magnetically confined fusion plasmas","volume":"61","author":"Hoelzl","year":"2021","journal-title":"Nucl Fusion"},{"issue":"1","key":"10.1016\/j.cnsns.2024.108434_b25","doi-asserted-by":"crossref","DOI":"10.1007\/s13137-019-0118-6","article-title":"Two-phase discrete fracture matrix models with linear and nonlinear transmission conditions","volume":"10","author":"Aghili","year":"2019","journal-title":"Int J Geomath"},{"key":"10.1016\/j.cnsns.2024.108434_b26","doi-asserted-by":"crossref","DOI":"10.1016\/j.compfluid.2019.104347","article-title":"Assessment of numerical schemes for complex two-phase flows with real equations of state","volume":"196","author":"Helluy","year":"2020","journal-title":"Comput & Fluids"},{"issue":"2022","key":"10.1016\/j.cnsns.2024.108434_b27","article-title":"High-fidelity simulations of unsteady civil aircraft aerodynamics: stakes and perspectives. Application of zonal detached eddy simulation","volume":"372","author":"Deck","year":"2014","journal-title":"Philos Trans R Soc Lond Ser A Math Phys Eng Sci"},{"key":"10.1016\/j.cnsns.2024.108434_b28","first-page":"1","article-title":"Neural operator: Learning maps between function spaces with applications to PDEs","volume":"24","author":"Kovachki","year":"2023","journal-title":"J Mach Learn Res"},{"issue":"1","key":"10.1016\/j.cnsns.2024.108434_b29","doi-asserted-by":"crossref","first-page":"49","DOI":"10.3934\/krm.2021044","article-title":"A neural network closure for the Euler-Poisson system based on kinetic simulations","volume":"15","author":"Bois","year":"2022","journal-title":"Kinet Relat Models"},{"issue":"1","key":"10.1016\/j.cnsns.2024.108434_b30","doi-asserted-by":"crossref","DOI":"10.1007\/s10915-021-01532-w","article-title":"Numerical solution of the parametric diffusion equation by deep neural networks","volume":"88","author":"Geist","year":"2021","journal-title":"J Sci Comput"},{"issue":"3","key":"10.1016\/j.cnsns.2024.108434_b31","doi-asserted-by":"crossref","DOI":"10.1063\/5.0039986","article-title":"Reduced-order modeling of advection-dominated systems with recurrent neural networks and convolutional autoencoders","volume":"33","author":"Maulik","year":"2021","journal-title":"Phys Fluids"},{"key":"10.1016\/j.cnsns.2024.108434_b32","doi-asserted-by":"crossref","DOI":"10.1016\/j.jcp.2021.110928","article-title":"Learning time-dependent PDEs with a linear and nonlinear separate convolutional neural network","volume":"453","author":"Qu","year":"2022","journal-title":"J Comput Phys"},{"issue":"7","key":"10.1016\/j.cnsns.2024.108434_b33","doi-asserted-by":"crossref","first-page":"1151","DOI":"10.1007\/s10483-023-2992-6","article-title":"Deep convolutional Ritz method: parametric PDE surrogates without labeled data","volume":"44","author":"Fuhg","year":"2023","journal-title":"Appl Math Mech (English Ed)"},{"key":"10.1016\/j.cnsns.2024.108434_b34","series-title":"Proceedings of the 35th international conference on machine learning","first-page":"3208","article-title":"PDE-Net: Learning PDEs from data","volume":"vol. 80","author":"Long","year":"2018"},{"key":"10.1016\/j.cnsns.2024.108434_b35","unstructured":"Anandkumar A, Azizzadenesheli K, Bhattacharya K, Kovachki N, Li Z, Liu B, Stuart A. Neural Operator: Graph Kernel Network for Partial Differential Equations. In: ICLR 2020 workshop on integration of deep neural models and differential equations. 2019."},{"article-title":"Multipole graph neural operator for parametric partial differential equations","year":"2020","series-title":"Proceedings of the 34th international conference on neural information processing systems","author":"Li","key":"10.1016\/j.cnsns.2024.108434_b36"},{"issue":"3","key":"10.1016\/j.cnsns.2024.108434_b37","doi-asserted-by":"crossref","first-page":"218","DOI":"10.1038\/s42256-021-00302-5","article-title":"Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators","volume":"3","author":"Lu","year":"2021","journal-title":"Nat Mach Intell"},{"key":"10.1016\/j.cnsns.2024.108434_b38","unstructured":"Li Z, Kovachki NB, Azizzadenesheli K, Liu B, Bhattacharya K, Stuart A, Anandkumar A. Fourier Neural Operator for Parametric Partial Differential Equations. In: International conference on learning representations. 2021."},{"key":"10.1016\/j.cnsns.2024.108434_b39","unstructured":"Raonic B, Molinaro R, De Ryck T, Rohner T, Bartolucci F, Alaifari R, Mishra S, de Bezenac E. Convolutional Neural Operators for robust and accurate learning of PDEs. In: Thirty-seventh conference on neural information processing systems. 2023."},{"key":"10.1016\/j.cnsns.2024.108434_b40","doi-asserted-by":"crossref","first-page":"686","DOI":"10.1016\/j.jcp.2018.10.045","article-title":"Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations","volume":"378","author":"Raissi","year":"2019","journal-title":"J Comput Phys"},{"issue":"1","key":"10.1016\/j.cnsns.2024.108434_b41","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s40304-018-0127-z","article-title":"The Deep Ritz method: A deep learning-based numerical algorithm for solving variational problems","volume":"6","author":"E","year":"2018","journal-title":"Commun Math Stat"},{"issue":"5","key":"10.1016\/j.cnsns.2024.108434_b42","doi-asserted-by":"crossref","DOI":"10.1088\/1741-4326\/ad313a","article-title":"Plasma surrogate modelling using Fourier neural operators","volume":"64","author":"Gopakumar","year":"2024","journal-title":"Nucl Fusion"},{"issue":"40","key":"10.1016\/j.cnsns.2024.108434_b43","doi-asserted-by":"crossref","DOI":"10.1126\/sciadv.abi8605","article-title":"Learning the solution operator of parametric partial differential equations with physics-informed DeepONets","volume":"7","author":"Wang","year":"2021","journal-title":"Sci Adv"},{"year":"2023","series-title":"Physics-informed neural operator for learning partial differential equations","author":"Li","key":"10.1016\/j.cnsns.2024.108434_b44"},{"issue":"6","key":"10.1016\/j.cnsns.2024.108434_b45","doi-asserted-by":"crossref","first-page":"422","DOI":"10.1038\/s42254-021-00314-5","article-title":"Physics-informed machine learning","volume":"3","author":"Karniadakis","year":"2021","journal-title":"Nat Rev Phys"},{"key":"10.1016\/j.cnsns.2024.108434_b46","series-title":"Domain decomposition methods in science and engineering XXVII","first-page":"85","article-title":"On global and monotone convergence of the preconditioned Newton\u2019s method for some mildly nonlinear systems","author":"Brenner","year":"2024"},{"key":"10.1016\/j.cnsns.2024.108434_b47","doi-asserted-by":"crossref","first-page":"526","DOI":"10.1016\/j.jcp.2014.04.046","article-title":"Finite-difference schemes for anisotropic diffusion","volume":"272","author":"van Es","year":"2014","journal-title":"J Comput Phys"},{"year":"2023","series-title":"Geometry-informed neural operator for large-scale 3D PDEs","author":"Li","key":"10.1016\/j.cnsns.2024.108434_b48"},{"year":"2024","series-title":"Newton informed neural operator for computing multiple solutions of nonlinear partials differential equations","author":"Hao","key":"10.1016\/j.cnsns.2024.108434_b49"},{"year":"2023","series-title":"Hybrid Newton method for the acceleration of well event handling in the simulation of CO2 storage using supervised learning","author":"Lechevallier","key":"10.1016\/j.cnsns.2024.108434_b50"}],"container-title":["Communications in Nonlinear Science and Numerical Simulation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1007570424006191?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1007570424006191?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,11,25]],"date-time":"2024-11-25T23:46:33Z","timestamp":1732578393000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1007570424006191"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2025,1]]},"references-count":50,"alternative-id":["S1007570424006191"],"URL":"https:\/\/doi.org\/10.1016\/j.cnsns.2024.108434","relation":{},"ISSN":["1007-5704"],"issn-type":[{"type":"print","value":"1007-5704"}],"subject":[],"published":{"date-parts":[[2025,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Accelerating the convergence of Newton\u2019s method for nonlinear elliptic PDEs using Fourier neural operators","name":"articletitle","label":"Article Title"},{"value":"Communications in Nonlinear Science and Numerical Simulation","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cnsns.2024.108434","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"108434"}}