{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,6,2]],"date-time":"2024-06-02T05:10:38Z","timestamp":1717305038143},"reference-count":47,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Communications in Nonlinear Science and Numerical Simulation"],"published-print":{"date-parts":[[2024,8]]},"DOI":"10.1016\/j.cnsns.2024.108082","type":"journal-article","created":{"date-parts":[[2024,5,16]],"date-time":"2024-05-16T15:33:08Z","timestamp":1715873588000},"page":"108082","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"title":["An implicit\u2013explicit relaxation extrapolated Runge\u2013Kutta and energy-preserving finite element method for Klein\u2013Gordon\u2013Schr\u00f6dinger equations"],"prefix":"10.1016","volume":"135","author":[{"given":"Yanping","family":"Chen","sequence":"first","affiliation":[]},{"given":"Liu","family":"Yu","sequence":"additional","affiliation":[]},{"given":"Changhui","family":"Yao","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"3","key":"10.1016\/j.cnsns.2024.108082_b1","doi-asserted-by":"crossref","first-page":"833","DOI":"10.1007\/s00211-016-0818-x","article-title":"A uniformly accurate (UA) multiscale time integrator Fourier pseudospectral method for the Klein-Gordon-Schr\u00f6dinger equations in the nonrelativistic limit regime. A UA method for Klein-Gordon-Schr\u00f6dinger equation","volume":"135","author":"Bao","year":"2017","journal-title":"Numer Math"},{"issue":"5","key":"10.1016\/j.cnsns.2024.108082_b2","doi-asserted-by":"crossref","first-page":"4206","DOI":"10.1137\/16M1075880","article-title":"Smoothing for the Zakharov and Klein-Gordon-Schr\u00f6dinger systems on Euclidean spaces","volume":"49","author":"Compaan","year":"2017","journal-title":"SIAM J Math Anal"},{"issue":"5","key":"10.1016\/j.cnsns.2024.108082_b3","doi-asserted-by":"crossref","first-page":"1190","DOI":"10.1137\/0521065","article-title":"Attractors for the system of Schr\u00f6dinger and Klein-Gordon equations with Yukawa coupling","volume":"21","author":"Biler","year":"1990","journal-title":"SIAM J Math Anal"},{"issue":"2","key":"10.1016\/j.cnsns.2024.108082_b4","doi-asserted-by":"crossref","first-page":"2128","DOI":"10.1137\/21M1411330","article-title":"On solutions with compact spectrum to nonlinear Klein-Gordon and Schr\u00f6dinger equations","volume":"54","author":"Comech","year":"2022","journal-title":"SIAM J Math Anal"},{"issue":"2","key":"10.1016\/j.cnsns.2024.108082_b5","doi-asserted-by":"crossref","first-page":"1863","DOI":"10.1016\/j.jcp.2007.02.018","article-title":"Efficient and accurate numerical methods for the Klein-Gordon-Schr\u00f6dinger equations","volume":"225","author":"Bao","year":"2007","journal-title":"J Comput Phys"},{"issue":"21","key":"10.1016\/j.cnsns.2024.108082_b6","article-title":"Energy-conserving and time-stepping-varying ESAV-Hermite-Galerkin spectral scheme for nonlocal Klein-Gordon-Schr\u00f6dinger system with fractional Laplacian in unbounded domains","volume":"458","author":"Guo","year":"2022","journal-title":"J Comput Phys"},{"key":"10.1016\/j.cnsns.2024.108082_b7","doi-asserted-by":"crossref","DOI":"10.1016\/j.jcp.2023.112456","article-title":"High-order Lagrange multiplier method for the coupled Klein-Gordon-Schr\u00f6dinger system","volume":"493","author":"Li","year":"2023","journal-title":"J Comput Phys"},{"issue":"9","key":"10.1016\/j.cnsns.2024.108082_b8","doi-asserted-by":"crossref","first-page":"3517","DOI":"10.1016\/j.jcp.2009.02.006","article-title":"Explicit multi-symplectic methods for Klein-Gordon-Schr\u00f6dinger equations","volume":"228","author":"Hong","year":"2009","journal-title":"J Comput Phys"},{"issue":"2","key":"10.1016\/j.cnsns.2024.108082_b9","doi-asserted-by":"crossref","first-page":"B200","DOI":"10.1137\/22M1484109","article-title":"Mass-, energy-, and momentum-preserving spectral scheme for Klein-Gordon-Schr\u00f6dinger system on infinite domains","volume":"45","author":"Guo","year":"2023","journal-title":"SIAM J Sci Comput"},{"issue":"15\u201316","key":"10.1016\/j.cnsns.2024.108082_b10","doi-asserted-by":"crossref","first-page":"6969","DOI":"10.1016\/j.apm.2016.02.026","article-title":"New energy-preserving schemes for Klein-Gordon-Schr\u00f6dinger equations","volume":"40","author":"Zhang","year":"2016","journal-title":"Appl Math Model"},{"issue":"30","key":"10.1016\/j.cnsns.2024.108082_b11","doi-asserted-by":"crossref","first-page":"9125","DOI":"10.1088\/1751-8113\/40\/30\/030","article-title":"Numerical comparison of five difference schemes for coupled Klein-Gordon-Schr\u00f6dinger equations in quantum physics","volume":"40","author":"Hong","year":"2007","journal-title":"J Phys A"},{"issue":"6","key":"10.1016\/j.cnsns.2024.108082_b12","doi-asserted-by":"crossref","first-page":"2340","DOI":"10.1016\/j.apm.2011.08.030","article-title":"Numerical solution of the Yukawa-coupled Klein-Gordon-Schr\u00f6dinger equations via a Chebyshev pseudospectral multidomain method","volume":"36","author":"Dehghan","year":"2012","journal-title":"Appl Math Model"},{"issue":"2","key":"10.1016\/j.cnsns.2024.108082_b13","doi-asserted-by":"crossref","first-page":"211","DOI":"10.1007\/s00211-014-0638-9","article-title":"Uniformly accurate numerical schemes for highly oscillatory Klein-Gordon and nonlinear Schr\u00f6dinger equations","volume":"129","author":"Chartier","year":"2015","journal-title":"Numer Math"},{"issue":"18","key":"10.1016\/j.cnsns.2024.108082_b14","article-title":"A novel approach of unconditional optimal error estimate of linearized and conservative Galerkin FEM for Klein-Gordon-Schr\u00f6dinger equations","volume":"123","author":"Yang","year":"2023","journal-title":"Commun Nonlinear Sci Numer Simul"},{"issue":"18","key":"10.1016\/j.cnsns.2024.108082_b15","article-title":"Energy and quadratic invariants preserving (EQUIP) multi-symplectic methods for Hamiltonian wave equations","volume":"418","author":"Chen","year":"2020","journal-title":"J Comput Phys"},{"issue":"6","key":"10.1016\/j.cnsns.2024.108082_b16","doi-asserted-by":"crossref","first-page":"2897","DOI":"10.1137\/110856617","article-title":"Energy- and quadratic invariants\u2013preserving integrators based upon Gauss collocation formulae","volume":"50","author":"Brugnano","year":"2012","journal-title":"SIAM J Numer Anal"},{"issue":"21","key":"10.1016\/j.cnsns.2024.108082_b17","article-title":"Numerical solution of two and three dimensional time fractional damped nonlinear Klein-Gordon equation using ADI spectral element method","volume":"405","author":"Saffarian","year":"2021","journal-title":"Appl Math Comput"},{"key":"10.1016\/j.cnsns.2024.108082_b18","doi-asserted-by":"crossref","first-page":"137","DOI":"10.1016\/j.jcp.2018.03.015","article-title":"Functionally-fitted energy-preserving integrators for Poisson systems","volume":"364","author":"Wang","year":"2018","journal-title":"J Comput Phys"},{"issue":"4","key":"10.1016\/j.cnsns.2024.108082_b19","doi-asserted-by":"crossref","first-page":"2036","DOI":"10.1137\/15M1032752","article-title":"Functionally fitted energy-preserving methods for solving oscillatory nonlinear Hamiltonian systems","volume":"54","author":"Li","year":"2016","journal-title":"SIAM J Numer Anal"},{"issue":"1\u20132","key":"10.1016\/j.cnsns.2024.108082_b20","first-page":"17","article-title":"Hamiltonian boundary value methods (energy preserving discrete line integral methods)","volume":"5","author":"Brugnano","year":"2010","journal-title":"JNAIAM J Numer Anal Ind Appl Math"},{"issue":"20","key":"10.1016\/j.cnsns.2024.108082_b21","doi-asserted-by":"crossref","first-page":"6770","DOI":"10.1016\/j.jcp.2012.06.022","article-title":"Preserving energy resp. dissipation in numerical PDEs using the average vector field method","volume":"231","author":"Celledoni","year":"2012","journal-title":"J Comput Phys"},{"key":"10.1016\/j.cnsns.2024.108082_b22","doi-asserted-by":"crossref","first-page":"407","DOI":"10.1016\/j.jcp.2017.10.021","article-title":"The scalar auxiliary variable (SAV) approach for gradient flows","volume":"353","author":"Shen","year":"2018","journal-title":"J Comput Phys"},{"key":"10.1016\/j.cnsns.2024.108082_b23","doi-asserted-by":"crossref","first-page":"47","DOI":"10.1007\/s10915-021-01649-y","article-title":"Efficient structure preserving schemes for the Klein\u2013Gordon-Schr\u00f6dinger equations","volume":"89","author":"Zhang","year":"2021","journal-title":"J Sci Comput"},{"key":"10.1016\/j.cnsns.2024.108082_b24","doi-asserted-by":"crossref","first-page":"50","DOI":"10.1090\/S0025-5718-1964-0159424-9","article-title":"Implicit Runge-Kutta processes","volume":"18","author":"Butcher","year":"1964","journal-title":"Math Comp"},{"issue":"186","key":"10.1016\/j.cnsns.2024.108082_b25","first-page":"411","article-title":"TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework","volume":"52","author":"Cockburn","year":"1989","journal-title":"Math Comp"},{"issue":"23","key":"10.1016\/j.cnsns.2024.108082_b26","article-title":"Accelerated implicit-explicit Runge-Kutta schemes for locally stiff systems","volume":"429","author":"Vermeire","year":"2021","journal-title":"J Comput Phys"},{"issue":"23","key":"10.1016\/j.cnsns.2024.108082_b27","doi-asserted-by":"crossref","first-page":"38","DOI":"10.1007\/s10915-022-01995-5","article-title":"Arbitrarily high order and fully discrete extrapolated RK-SAV\/DG schemes for phase-field gradient flows","volume":"93","author":"Tang","year":"2022","journal-title":"J Sci Comput"},{"issue":"3","key":"10.1016\/j.cnsns.2024.108082_b28","doi-asserted-by":"crossref","first-page":"1069","DOI":"10.1137\/040611434","article-title":"Explicit exponential Runge-Kutta methods for semilinear parabolic problems","volume":"43","author":"Hochbruck","year":"2005","journal-title":"SIAM J Numer Anal"},{"key":"10.1016\/j.cnsns.2024.108082_b29","doi-asserted-by":"crossref","first-page":"141","DOI":"10.1016\/j.jcp.2016.08.042","article-title":"Extrapolated stabilized explicit Runge-Kutta methods","volume":"326","author":"Mart\u00edn-Vaquero","year":"2016","journal-title":"J Comput Phys"},{"issue":"339","key":"10.1016\/j.cnsns.2024.108082_b30","doi-asserted-by":"crossref","first-page":"117","DOI":"10.1090\/mcom\/3766","article-title":"Implicit-explicit relaxation Runge-Kutta methods: construction, analysis and applications to PDEs","volume":"92","author":"Li","year":"2023","journal-title":"Math Comp"},{"issue":"19","key":"10.1016\/j.cnsns.2024.108082_b31","article-title":"Linearly implicit and high-order energy-preserving relaxation schemes for highly oscillatory Hamiltonian systems","volume":"477","author":"Li","year":"2023","journal-title":"J Comput Phys"},{"issue":"8","key":"10.1016\/j.cnsns.2024.108082_b32","doi-asserted-by":"crossref","first-page":"3319","DOI":"10.1016\/j.apm.2008.10.038","article-title":"Stability of continuous Runge-Kutta-type methods for nonlinear neutral delay-differential equations","volume":"33","author":"Wang","year":"2009","journal-title":"Appl Math Model"},{"issue":"3","key":"10.1016\/j.cnsns.2024.108082_b33","doi-asserted-by":"crossref","first-page":"1158","DOI":"10.1137\/18M122892X","article-title":"Strong stability of explicit Runge-Kutta time discretizations","volume":"57","author":"Sun","year":"2019","journal-title":"SIAM J Numer Anal"},{"key":"10.1016\/j.cnsns.2024.108082_b34","doi-asserted-by":"crossref","first-page":"567","DOI":"10.1016\/j.jcp.2017.03.018","article-title":"Symplectic exponential Runge-Kutta methods for solving nonlinear Hamiltonian systems","volume":"338","author":"Mei","year":"2017","journal-title":"J Comput Phys"},{"issue":"4","key":"10.1016\/j.cnsns.2024.108082_b35","doi-asserted-by":"crossref","first-page":"2569","DOI":"10.1137\/151005208","article-title":"Symplectic Runge-Kutta semidiscretization for stochastic Schr\u00f6dinger equation","volume":"54","author":"Chen","year":"2016","journal-title":"SIAM J Numer Anal"},{"issue":"1","key":"10.1016\/j.cnsns.2024.108082_b36","doi-asserted-by":"crossref","first-page":"250","DOI":"10.1016\/j.jcp.2004.08.012","article-title":"Almost symplectic Runge-Kutta schemes for Hamiltonian systems","volume":"203","author":"Tan","year":"2005","journal-title":"J Comput Phys"},{"issue":"25","key":"10.1016\/j.cnsns.2024.108082_b37","article-title":"Stability of high order finite difference and local discontinuous Galerkin schemes with explicit-implicit-null time-marching for high order dissipative and dispersive equations","volume":"464","author":"Tan","year":"2022","journal-title":"J Comput Phys"},{"key":"10.1016\/j.cnsns.2024.108082_b38","series-title":"Solving ordinary differential equations II: Stiff and differential\u2013algebraic problems","volume":"vol. 14","author":"Hairer","year":"1996"},{"key":"10.1016\/j.cnsns.2024.108082_b39","doi-asserted-by":"crossref","first-page":"1959","DOI":"10.1137\/120871821","article-title":"Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media","volume":"51","author":"Li","year":"2013","journal-title":"SIAM J Numer Anal"},{"key":"10.1016\/j.cnsns.2024.108082_b40","doi-asserted-by":"crossref","first-page":"88","DOI":"10.1137\/110854813","article-title":"Error estimates of splitting Galerkin methods for heat and sweat transport intextile materials","volume":"51","author":"Hou","year":"2013","journal-title":"SIAM J Numer Anal"},{"key":"10.1016\/j.cnsns.2024.108082_b41","doi-asserted-by":"crossref","first-page":"390","DOI":"10.1007\/s10915-013-9799-4","article-title":"A new error analysis of crankCnicolson galerkin fems for a generalized nonlinear Schr\u00f6dinger equation","volume":"60","author":"Wang","year":"2014","journal-title":"J Sci Comput"},{"key":"10.1016\/j.cnsns.2024.108082_b42","series-title":"Mathematical Methods for the Magnetohydrodynamics of Liquid Metals","author":"Gerbeau","year":"2006"},{"issue":"6","key":"10.1016\/j.cnsns.2024.108082_b43","doi-asserted-by":"crossref","first-page":"2850","DOI":"10.1137\/19M1263662","article-title":"Relaxation Runge\u2013Kutta methods: conservation and stability for inner-product norms","volume":"57","author":"Ketcheson","year":"2019","journal-title":"SIAM J Numer Anal"},{"issue":"2","key":"10.1016\/j.cnsns.2024.108082_b44","doi-asserted-by":"crossref","first-page":"A612","DOI":"10.1137\/19M1263480","article-title":"Relaxation Runge\u2013Kutta methods: fully-discrete explicit entropy-stable schemes for the compressible Euler and Navier\u2013Stokes equations","volume":"42","author":"Ranocha","year":"2020","journal-title":"SIAM J Sci Comput"},{"key":"10.1016\/j.cnsns.2024.108082_b45","doi-asserted-by":"crossref","DOI":"10.1016\/j.jcp.2023.112456","article-title":"High-order Lagrange multiplier method for the coupled Klein\u2013Gordon-Schr\u00f6dinger system","volume":"493","author":"Li","year":"2023","journal-title":"J Comput Phys"},{"key":"10.1016\/j.cnsns.2024.108082_b46","doi-asserted-by":"crossref","DOI":"10.1007\/s10444-017-9557-5","article-title":"Unconditional and optimal H2-error estimates of two linear and conservative finite difference schemes for the Klein\u2013Gordon-Schr\u00f6dinger equation in high dimensions","volume":"44","author":"Wang","year":"2018","journal-title":"Adv Comput Math"},{"issue":"6","key":"10.1016\/j.cnsns.2024.108082_b47","doi-asserted-by":"crossref","first-page":"A2886","DOI":"10.1137\/22M1511345","article-title":"Relaxation exponential Rosenbrock-type methods for oscillatory Hamiltonian systems","volume":"45","author":"Li","year":"2023","journal-title":"SIAM J Sci Comput"}],"container-title":["Communications in Nonlinear Science and Numerical Simulation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1007570424002673?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1007570424002673?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,6,2]],"date-time":"2024-06-02T04:50:17Z","timestamp":1717303817000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1007570424002673"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,8]]},"references-count":47,"alternative-id":["S1007570424002673"],"URL":"https:\/\/doi.org\/10.1016\/j.cnsns.2024.108082","relation":{},"ISSN":["1007-5704"],"issn-type":[{"value":"1007-5704","type":"print"}],"subject":[],"published":{"date-parts":[[2024,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"An implicit\u2013explicit relaxation extrapolated Runge\u2013Kutta and energy-preserving finite element method for Klein\u2013Gordon\u2013Schr\u00f6dinger equations","name":"articletitle","label":"Article Title"},{"value":"Communications in Nonlinear Science and Numerical Simulation","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cnsns.2024.108082","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"108082"}}