{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,10]],"date-time":"2024-07-10T09:22:14Z","timestamp":1720603334802},"reference-count":49,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,10,1]],"date-time":"2023-10-01T00:00:00Z","timestamp":1696118400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,10,1]],"date-time":"2023-10-01T00:00:00Z","timestamp":1696118400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,10,1]],"date-time":"2023-10-01T00:00:00Z","timestamp":1696118400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,10,1]],"date-time":"2023-10-01T00:00:00Z","timestamp":1696118400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,10,1]],"date-time":"2023-10-01T00:00:00Z","timestamp":1696118400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,10,1]],"date-time":"2023-10-01T00:00:00Z","timestamp":1696118400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100021171","name":"Basic and Applied Basic Research Foundation of Guangdong Province","doi-asserted-by":"publisher","award":["2022A1515011784"],"id":[{"id":"10.13039\/501100021171","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["12101177"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100003787","name":"Natural Science Foundation of Hebei Province","doi-asserted-by":"publisher","award":["12172317","52008152","A2021202001","E2021202087"],"id":[{"id":"10.13039\/501100003787","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100010877","name":"Science, Technology and Innovation Commission of Shenzhen Municipality","doi-asserted-by":"publisher","award":["JCYJ20210324125601005"],"id":[{"id":"10.13039\/501100010877","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Communications in Nonlinear Science and Numerical Simulation"],"published-print":{"date-parts":[[2023,10]]},"DOI":"10.1016\/j.cnsns.2023.107329","type":"journal-article","created":{"date-parts":[[2023,5,30]],"date-time":"2023-05-30T15:20:01Z","timestamp":1685460001000},"page":"107329","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":2,"special_numbering":"C","title":["Linear, second-order, unconditionally energy stable scheme for an electrohydrodynamic model with variable density and conductivity"],"prefix":"10.1016","volume":"125","author":[{"given":"Mingyang","family":"Pan","sequence":"first","affiliation":[]},{"given":"Chengxing","family":"Fu","sequence":"additional","affiliation":[]},{"given":"Wenxing","family":"Zhu","sequence":"additional","affiliation":[]},{"given":"Fengyu","family":"Jiao","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5786-581X","authenticated-orcid":false,"given":"Dongdong","family":"He","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.cnsns.2023.107329_b1","doi-asserted-by":"crossref","first-page":"381","DOI":"10.1146\/annurev.fluid.36.050802.122124","article-title":"Engineering flows in small devices: Microfluidics toward a lab-on-a-chip","volume":"36","author":"Stone","year":"2004","journal-title":"Annu Rev Fluid Mech"},{"key":"10.1016\/j.cnsns.2023.107329_b2","doi-asserted-by":"crossref","first-page":"977","DOI":"10.1103\/RevModPhys.77.977","article-title":"Microfluidics: Fluid physics at the nanoliter scale","volume":"77","author":"Squires","year":"2005","journal-title":"Rev Modern Phys"},{"key":"10.1016\/j.cnsns.2023.107329_b3","doi-asserted-by":"crossref","first-page":"839","DOI":"10.1103\/RevModPhys.80.839","article-title":"Transport phenomena in nanofluidics","volume":"80","author":"Schoch","year":"2008","journal-title":"Rev Modern Phys"},{"key":"10.1016\/j.cnsns.2023.107329_b4","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevLett.124.024501","article-title":"Nonuniform electro-osmotic flow drives fluid-structure instability","volume":"124","author":"Boyko","year":"2020","journal-title":"Phys Rev Lett"},{"key":"10.1016\/j.cnsns.2023.107329_b5","doi-asserted-by":"crossref","first-page":"309","DOI":"10.1146\/annurev.fluid.38.050304.092053","article-title":"Electrokinetic flow and dispersion in capillary electrophoresis","volume":"38","author":"Ghosal","year":"2006","journal-title":"Annu Rev Fluid Mech"},{"key":"10.1016\/j.cnsns.2023.107329_b6","doi-asserted-by":"crossref","first-page":"155","DOI":"10.1146\/annurev-fluid-122316-044531","article-title":"Film flows in the presence of electric fields","volume":"51","author":"Papageorgiou","year":"2019","journal-title":"Annu Rev Fluid Mech"},{"key":"10.1016\/j.cnsns.2023.107329_b7","article-title":"Massively multiplexed electrohydrodynamic tip streaming from a thin disc","volume":"126","author":"Wang","year":"2021","journal-title":"Phys Rev Lett"},{"key":"10.1016\/j.cnsns.2023.107329_b8","doi-asserted-by":"crossref","first-page":"2584","DOI":"10.1088\/0022-3727\/36\/20\/023","article-title":"Electrohydrodynamics and dielectrophoresis in microsystems: scaling laws","volume":"36","author":"Castellanos","year":"2003","journal-title":"J Phys D: Appl Phys"},{"key":"10.1016\/j.cnsns.2023.107329_b9","doi-asserted-by":"crossref","first-page":"355","DOI":"10.1038\/nature11031","article-title":"Thermal and electrical conductivity of iron at Earth\u2019s core conditions","volume":"485","author":"Pozzo","year":"2012","journal-title":"Nature"},{"key":"10.1016\/j.cnsns.2023.107329_b10","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevE.81.015303","article-title":"Electrothermally driven flows in ac electrowetting","volume":"81","author":"Garc\u00eda-S\u00e1nchez","year":"2010","journal-title":"Phys Rev E"},{"key":"10.1016\/j.cnsns.2023.107329_b11","doi-asserted-by":"crossref","first-page":"509","DOI":"10.1146\/annurev-fluid-010719-060358","article-title":"Electroconvection near electrochemical interfaces: Experiments, modeling, and computation","volume":"52","author":"Mani","year":"2020","journal-title":"Annu Rev Fluid Mech"},{"issue":"10","key":"10.1016\/j.cnsns.2023.107329_b12","doi-asserted-by":"crossref","DOI":"10.1063\/1.5047283","article-title":"Mesoscopic simulation of electrohydrodynamic effects on laminar natural convection of a dielectric liquid in a cubic cavity","volume":"30","author":"Luo","year":"2018","journal-title":"Phys Fluids"},{"key":"10.1016\/j.cnsns.2023.107329_b13","doi-asserted-by":"crossref","first-page":"301","DOI":"10.1063\/1.869567","article-title":"Electrohydrodynamic instability in a thin fluid layer with an electrical conductivity gradient","volume":"10","author":"Baygents","year":"1998","journal-title":"Phys Fluids"},{"key":"10.1016\/j.cnsns.2023.107329_b14","doi-asserted-by":"crossref","first-page":"263","DOI":"10.1017\/S0022112004002381","article-title":"Convective and absolute electrokinetic instability with conductivity gradients","volume":"524","author":"Chen","year":"2005","journal-title":"J Fluid Mech"},{"key":"10.1016\/j.cnsns.2023.107329_b15","doi-asserted-by":"crossref","first-page":"201","DOI":"10.1016\/j.matcom.2016.11.006","article-title":"Simulations of non-homogeneous viscous flows with incompressibility constraints","volume":"137","author":"Calgaro","year":"2017","journal-title":"Math Comput Simulation"},{"key":"10.1016\/j.cnsns.2023.107329_b16","doi-asserted-by":"crossref","first-page":"124","DOI":"10.1016\/j.jcp.2013.02.010","article-title":"A new fractional time-stepping method for variable density incompressible flows","volume":"242","author":"Li","year":"2013","journal-title":"J Comput Phys"},{"key":"10.1016\/j.cnsns.2023.107329_b17","doi-asserted-by":"crossref","DOI":"10.1016\/j.jcp.2020.109906","article-title":"A bound-preserving high order scheme for variable density incompressible Navier\u2013Stokes equations","volume":"425","author":"Li","year":"2021","journal-title":"J Comput Phys"},{"key":"10.1016\/j.cnsns.2023.107329_b18","doi-asserted-by":"crossref","first-page":"261","DOI":"10.1017\/S0022112004001090","article-title":"Asymptotic matching constraints for a boundary-layer flow of a power-law fluid","volume":"518","author":"Denier","year":"2004","journal-title":"J Fluid Mech"},{"key":"10.1016\/j.cnsns.2023.107329_b19","doi-asserted-by":"crossref","DOI":"10.1016\/j.jnnfm.2020.104470","article-title":"Electro-thermo-convection in non-Newtonian power-law fluids within rectangular enclosures","volume":"288","author":"Su","year":"2021","journal-title":"J Non-Newton Fluid Mech"},{"key":"10.1016\/j.cnsns.2023.107329_b20","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1017\/S096249291100002X","article-title":"Topics in structure-preserving discretization","volume":"20","author":"Christiansen","year":"2011","journal-title":"Acta Numer"},{"key":"10.1016\/j.cnsns.2023.107329_b21","doi-asserted-by":"crossref","first-page":"474","DOI":"10.1137\/17M1150153","article-title":"A new class of efficient and robust energy stable schemes for gradient flows","volume":"61","author":"Shen","year":"2019","journal-title":"SIAM Rev"},{"key":"10.1016\/j.cnsns.2023.107329_b22","doi-asserted-by":"crossref","first-page":"531","DOI":"10.1051\/m2an\/2010013","article-title":"Convergent finite element discretizations of the Navier\u2013Stokes\u2013Nernst\u2013Planck\u2013Poisson system","volume":"44","author":"Prohl","year":"2010","journal-title":"ESAIM Math Model Numer"},{"key":"10.1016\/j.cnsns.2023.107329_b23","doi-asserted-by":"crossref","first-page":"199","DOI":"10.1016\/j.cma.2012.02.003","article-title":"A stabilized finite element method for the numerical simulation of multi-ion transport in electrochemical systems","volume":"223","author":"Bauer","year":"2012","journal-title":"Comput Methods Appl Mech Engrg"},{"key":"10.1016\/j.cnsns.2023.107329_b24","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.jcp.2015.10.053","article-title":"Energetically stable discretizations for charge transport and electrokinetic models","volume":"306","author":"Metti","year":"2016","journal-title":"J Comput Phys"},{"key":"10.1016\/j.cnsns.2023.107329_b25","doi-asserted-by":"crossref","first-page":"B982","DOI":"10.1137\/17M1146956","article-title":"Newton solvers for drift-diffusion and electrokinetic equations","volume":"40","author":"Bousquet","year":"2018","journal-title":"SIAM J Sci Comput"},{"key":"10.1016\/j.cnsns.2023.107329_b26","doi-asserted-by":"crossref","DOI":"10.1016\/j.jcp.2020.109430","article-title":"Transient electrohydrodynamic flow with concentration-dependent fluid properties: Modelling and energy-stable numerical schemes","volume":"412","author":"Linga","year":"2020","journal-title":"J Comput Phys"},{"key":"10.1016\/j.cnsns.2023.107329_b27","doi-asserted-by":"crossref","DOI":"10.1016\/j.jcp.2020.109889","article-title":"Energetic stable discretization for non-isothermal electrokinetics model","volume":"425","author":"Wu","year":"2021","journal-title":"J Comput Phys"},{"key":"10.1016\/j.cnsns.2023.107329_b28","doi-asserted-by":"crossref","DOI":"10.1016\/j.jcp.2020.109870","article-title":"Energy stable finite element method for an electrohydrodynamic model with variable density","volume":"424","author":"Pan","year":"2021","journal-title":"J Comput Phys"},{"key":"10.1016\/j.cnsns.2023.107329_b29","doi-asserted-by":"crossref","first-page":"B479","DOI":"10.1137\/20M1336734","article-title":"On a novel fully decoupled, second-order accurate energy stable numerical scheme for a binary fluid-surfactant phase-field model","volume":"43","author":"Yang","year":"2021","journal-title":"SIAM J Sci Comput"},{"key":"10.1016\/j.cnsns.2023.107329_b30","doi-asserted-by":"crossref","DOI":"10.1016\/j.cma.2020.113502","article-title":"A novel fully-decoupled, second-order and energy stable numerical scheme of the conserved Allen\u2013Cahn type flow-coupled binary surfactant model","volume":"373","author":"Yang","year":"2021","journal-title":"Comput Methods Appl Mech Engrg"},{"issue":"5","key":"10.1016\/j.cnsns.2023.107329_b31","doi-asserted-by":"crossref","first-page":"2323","DOI":"10.1051\/m2an\/2021056","article-title":"Fully-discrete finite element numerical scheme with decoupling structure and energy stability for the Cahn\u2013Hilliard phase-field model of two-phase incompressible flow system with variable density and viscosity","volume":"55","author":"Chen","year":"2021","journal-title":"ESAIM Math Model Numer"},{"key":"10.1016\/j.cnsns.2023.107329_b32","doi-asserted-by":"crossref","DOI":"10.1016\/j.jcp.2021.110752","article-title":"A fully decoupled linearized finite element method with second-order temporal accuracy and unconditional energy stability for incompressible MHD equations","volume":"448","author":"Zhang","year":"2022","journal-title":"J Comput Phys"},{"key":"10.1016\/j.cnsns.2023.107329_b33","doi-asserted-by":"crossref","DOI":"10.1016\/j.jcp.2022.111026","article-title":"A second-order time accurate and fully-decoupled numerical scheme of the Darcy\u2013Newtonian\u2013Nematic model for two-phase complex fluids confined in the Hele\u2013Shaw cell","volume":"456","author":"Chen","year":"2022","journal-title":"J Comput Phys"},{"key":"10.1016\/j.cnsns.2023.107329_b34","doi-asserted-by":"crossref","DOI":"10.1016\/j.cma.2022.115479","article-title":"Efficient linear, fully-decoupled and energy stable numerical scheme for a variable density and viscosity, volume-conserved, hydrodynamically coupled phase-field elastic bending energy model of lipid vesicles","volume":"400","author":"Yang","year":"2022","journal-title":"Comput Methods Appl Mech Engrg"},{"key":"10.1016\/j.cnsns.2023.107329_b35","doi-asserted-by":"crossref","DOI":"10.1016\/j.cnsns.2021.106120","article-title":"A novel fully-decoupled, linear, and unconditionally energy-stable scheme of the conserved Allen\u2013Cahn phase-field model of a two-phase incompressible flow system with variable density and viscosity","volume":"107","author":"Liu","year":"2022","journal-title":"Commun Nonlinear Sci Numer Simul"},{"key":"10.1016\/j.cnsns.2023.107329_b36","doi-asserted-by":"crossref","DOI":"10.1016\/j.cam.2022.114773","article-title":"Decoupled finite element scheme of the variable-density and viscosity phase-field model of a two-phase incompressible fluid flow system using the volume-conserved Allen\u2013Cahn dynamics","volume":"420","author":"Wang","year":"2023","journal-title":"J Comput Appl Math"},{"key":"10.1016\/j.cnsns.2023.107329_b37","doi-asserted-by":"crossref","first-page":"B138","DOI":"10.1137\/17M1111759","article-title":"Fully discrete second-order linear schemes for hydrodynamic phase field models of binary viscous fluid flows with variable densities","volume":"40","author":"Gong","year":"2018","journal-title":"SIAM J Sci Comput"},{"key":"10.1016\/j.cnsns.2023.107329_b38","doi-asserted-by":"crossref","first-page":"382","DOI":"10.1016\/j.jcp.2019.06.030","article-title":"A second order fully-discrete linear energy stable scheme for a binary compressible viscous fluid model","volume":"395","author":"Zhao","year":"2019","journal-title":"J Comput Phys"},{"key":"10.1016\/j.cnsns.2023.107329_b39","series-title":"Theory and practice of finite elements","author":"Ern","year":"2004"},{"key":"10.1016\/j.cnsns.2023.107329_b40","series-title":"The mathematical theory of finite element methods","author":"Brenner","year":"2008"},{"key":"10.1016\/j.cnsns.2023.107329_b41","doi-asserted-by":"crossref","first-page":"6011","DOI":"10.1016\/j.cma.2005.10.010","article-title":"An overview of projection methods for incompressible flows","volume":"195","author":"Guermond","year":"2006","journal-title":"Comput Methods Appl Mech Engrg"},{"key":"10.1016\/j.cnsns.2023.107329_b42","doi-asserted-by":"crossref","DOI":"10.1016\/j.jcp.2020.109439","article-title":"A conservative finite element method for the incompressible Euler equations with variable density","volume":"412","author":"Gawlik","year":"2020","journal-title":"J Comput Phys"},{"key":"10.1016\/j.cnsns.2023.107329_b43","doi-asserted-by":"crossref","first-page":"251","DOI":"10.1515\/jnum-2012-0013","article-title":"New development in FreeFem++","volume":"20","author":"Hecht","year":"2012","journal-title":"J Numer Math"},{"key":"10.1016\/j.cnsns.2023.107329_b44","doi-asserted-by":"crossref","first-page":"197","DOI":"10.1016\/0370-1573(91)90153-D","article-title":"Theory of the Rayleigh\u2013Taylor instability","volume":"206","author":"Kull","year":"1991","journal-title":"Phys Rep"},{"key":"10.1016\/j.cnsns.2023.107329_b45","doi-asserted-by":"crossref","DOI":"10.1063\/1.4865674","article-title":"On the control and suppression of the Rayleigh\u2013Taylor instability using electric fields","volume":"26","author":"Cimpeanu","year":"2014","journal-title":"Phys Fluids"},{"key":"10.1016\/j.cnsns.2023.107329_b46","doi-asserted-by":"crossref","first-page":"A36","DOI":"10.1017\/jfm.2023.105","article-title":"On the nonlinear behaviour of the Rayleigh\u2013Taylor instability with a tangential electric field for inviscid and perfect dielectric fluids","volume":"958","author":"Guo","year":"2023","journal-title":"J Fluid Mech"},{"key":"10.1016\/j.cnsns.2023.107329_b47","series-title":"Direct numerical simulations of gas\u2013liquid multiphase flows","author":"Tryggvason","year":"2011"},{"key":"10.1016\/j.cnsns.2023.107329_b48","doi-asserted-by":"crossref","first-page":"139","DOI":"10.1146\/annurev.fluid.30.1.139","article-title":"Diffuse-interface methods in fluid mechanics","volume":"30","author":"Anderson","year":"1998","journal-title":"Annu Rev Fluid Mech"},{"key":"10.1016\/j.cnsns.2023.107329_b49","doi-asserted-by":"crossref","first-page":"S103","DOI":"10.1051\/m2an\/2020029","article-title":"Error analysis of a fully discrete finite element method for variable density incompressible flows in two dimensions","volume":"55","author":"Cai","year":"2021","journal-title":"ESAIM Math Model Numer"}],"container-title":["Communications in Nonlinear Science and Numerical Simulation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1007570423002472?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1007570423002472?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,1,30]],"date-time":"2024-01-30T11:50:31Z","timestamp":1706615431000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1007570423002472"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,10]]},"references-count":49,"alternative-id":["S1007570423002472"],"URL":"https:\/\/doi.org\/10.1016\/j.cnsns.2023.107329","relation":{},"ISSN":["1007-5704"],"issn-type":[{"value":"1007-5704","type":"print"}],"subject":[],"published":{"date-parts":[[2023,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Linear, second-order, unconditionally energy stable scheme for an electrohydrodynamic model with variable density and conductivity","name":"articletitle","label":"Article Title"},{"value":"Communications in Nonlinear Science and Numerical Simulation","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cnsns.2023.107329","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"107329"}}