{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,22]],"date-time":"2025-03-22T12:05:08Z","timestamp":1742645108572,"version":"3.37.3"},"reference-count":57,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["11902264","11902266","12072283","12172301"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012449","name":"Southern University of Science and Technology","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100012449","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100013314","name":"Higher Education Discipline Innovation Project","doi-asserted-by":"publisher","award":["B17037"],"id":[{"id":"10.13039\/501100013314","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Communications in Nonlinear Science and Numerical Simulation"],"published-print":{"date-parts":[[2023,5]]},"DOI":"10.1016\/j.cnsns.2022.107079","type":"journal-article","created":{"date-parts":[[2022,12,31]],"date-time":"2022-12-31T16:04:28Z","timestamp":1672502668000},"page":"107079","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":12,"special_numbering":"C","title":["Unified gas-kinetic scheme with simplified multi-scale numerical flux for thermodynamic non-equilibrium flow in all flow regimes"],"prefix":"10.1016","volume":"119","author":[{"given":"Rui","family":"Zhang","sequence":"first","affiliation":[]},{"given":"Sha","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Chengwen","family":"Zhong","sequence":"additional","affiliation":[]},{"given":"Congshan","family":"Zhuo","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.cnsns.2022.107079_b1","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1016\/j.paerosci.2014.09.009","article-title":"Hypersonics into the 21st century: A perspective on AFOSR-sponsored research in aerothermodynamics","volume":"72","author":"Schmisseur","year":"2015","journal-title":"Prog Aerosp Sci"},{"key":"10.1016\/j.cnsns.2022.107079_b2","doi-asserted-by":"crossref","DOI":"10.1016\/j.paerosci.2020.100638","article-title":"Survey of flight and numerical data of hypersonic rarefied flows encountered in earth orbit and atmospheric reentry","volume":"118","author":"Schouler","year":"2020","journal-title":"Prog Aerosp Sci"},{"key":"10.1016\/j.cnsns.2022.107079_b3","doi-asserted-by":"crossref","first-page":"469","DOI":"10.1146\/annurev.fluid.30.1.469","article-title":"Computational hypersonic rarefied flows","volume":"30","author":"Ivanov","year":"1998","journal-title":"Annu Rev Fluid Mech"},{"key":"10.1016\/j.cnsns.2022.107079_b4","doi-asserted-by":"crossref","first-page":"134","DOI":"10.1016\/j.ijthermalsci.2019.04.016","article-title":"Effect of Knudsen layer on the heat transfer in hypersonic rarefied gas flows","volume":"142","author":"Gijare","year":"2019","journal-title":"Int J Therm Sci"},{"year":"2016","series-title":"Study of the gas-kinetic scheme based on the analytic solution of model equations (in Chinese)","author":"Jiang","key":"10.1016\/j.cnsns.2022.107079_b5"},{"year":"1994","series-title":"Molecular gas dynamics and the direct simulation of gas flows","author":"Bird","key":"10.1016\/j.cnsns.2022.107079_b6"},{"year":"2006","series-title":"Hypersonic and high-temperature gas dynamics","author":"Jr.","key":"10.1016\/j.cnsns.2022.107079_b7"},{"issue":"4","key":"10.1016\/j.cnsns.2022.107079_b8","doi-asserted-by":"crossref","first-page":"1116","DOI":"10.1016\/j.jcp.2008.10.013","article-title":"Gas-kinetic numerical studies of three-dimensional complex flows on spacecraft re-entry","volume":"228","author":"Li","year":"2009","journal-title":"J Comput Phys"},{"key":"10.1016\/j.cnsns.2022.107079_b9","doi-asserted-by":"crossref","first-page":"633","DOI":"10.1017\/jfm.2019.692","article-title":"Direct simulation Monte Carlo computations and experiments on leading-edge separation in rarefied hypersonic flow","volume":"879","author":"Prakash","year":"2019","journal-title":"J Fluid Mech"},{"issue":"4","key":"10.1016\/j.cnsns.2022.107079_b10","doi-asserted-by":"crossref","first-page":"405","DOI":"10.1016\/0021-9991(75)90094-7","article-title":"Statistical collision model for Monte Carlo simulation of polyatomic gas mixture","volume":"18","author":"Borgnakke","year":"1975","journal-title":"J Comput Phys"},{"key":"10.1016\/j.cnsns.2022.107079_b11","doi-asserted-by":"crossref","first-page":"66","DOI":"10.1016\/j.paerosci.2014.09.003","article-title":"Progress and future prospects for particle-based simulation of hypersonic flow","volume":"72","author":"Schwartzentruber","year":"2015","journal-title":"Prog Aerosp Sci"},{"year":"2021","series-title":"A unified computational fluid dynamics framework from rarefied to continuum regimes","author":"Xu","key":"10.1016\/j.cnsns.2022.107079_b12"},{"year":"1970","series-title":"The mathematical theory of non-uniform gases","author":"Chapman","key":"10.1016\/j.cnsns.2022.107079_b13"},{"year":"1951","series-title":"Transport phenomena in polyatomic gases","author":"Chang","key":"10.1016\/j.cnsns.2022.107079_b14"},{"issue":"3","key":"10.1016\/j.cnsns.2022.107079_b15","doi-asserted-by":"crossref","first-page":"511","DOI":"10.1103\/PhysRev.94.511","article-title":"A model for collision processes in gases. i. Small amplitude processes in charged and neutral one-component systems","volume":"94","author":"Bhatnagar","year":"1954","journal-title":"Phys Rev"},{"issue":"9","key":"10.1016\/j.cnsns.2022.107079_b16","doi-asserted-by":"crossref","first-page":"1658","DOI":"10.1063\/1.1761920","article-title":"New statistical models for kinetic theory: Methods of construction","volume":"9","author":"Holway","year":"1966","journal-title":"Phys Fluids"},{"issue":"5","key":"10.1016\/j.cnsns.2022.107079_b17","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1007\/BF01029546","article-title":"Generalization of the Krook kinetic relaxation equation","volume":"3","author":"Shakhov","year":"1968","journal-title":"Fluid Dyn"},{"issue":"6","key":"10.1016\/j.cnsns.2022.107079_b18","doi-asserted-by":"crossref","first-page":"959","DOI":"10.1007\/BF01023275","article-title":"A model kinetic equation for a gas with rotational degrees of freedom","volume":"10","author":"Rykov","year":"1975","journal-title":"Fluid Dyn"},{"key":"10.1016\/j.cnsns.2022.107079_b19","doi-asserted-by":"crossref","first-page":"24","DOI":"10.1017\/jfm.2014.632","article-title":"A kinetic model of the Boltzmann equation for non-vibrating polyatomic gases","volume":"763","author":"Wu","year":"2015","journal-title":"J Fluid Mech"},{"key":"10.1016\/j.cnsns.2022.107079_b20","doi-asserted-by":"crossref","first-page":"237","DOI":"10.1016\/j.jcp.2017.08.045","article-title":"Unified gas-kinetic scheme for diatomic molecular flow with translational, rotational, and vibrational modes","volume":"350","author":"Wang","year":"2017","journal-title":"J Comput Phys"},{"issue":"4","key":"10.1016\/j.cnsns.2022.107079_b21","doi-asserted-by":"crossref","first-page":"536","DOI":"10.1134\/S0015462818040110","article-title":"Application of model kinetic equations to calculations of super- and hypersonic molecular gas flows","volume":"53","author":"Titarev","year":"2018","journal-title":"Fluid Dyn"},{"issue":"9","key":"10.1016\/j.cnsns.2022.107079_b22","doi-asserted-by":"crossref","DOI":"10.1063\/5.0021672","article-title":"Modeling of nitrogen and oxygen gas mixture with a novel diatomic kinetic model","volume":"10","author":"Todorova","year":"2020","journal-title":"AIP Adv"},{"key":"10.1016\/j.cnsns.2022.107079_b23","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.euromechflu.2021.02.006","article-title":"An ES-BGK model for polyatomic gases in rotational and vibrational nonequilibrium","volume":"88","author":"Dauvois","year":"2021","journal-title":"Eur J Mech B\/Fluids"},{"key":"10.1016\/j.cnsns.2022.107079_b24","doi-asserted-by":"crossref","first-page":"326","DOI":"10.1016\/j.jcp.2017.08.065","article-title":"A low noise discrete velocity method for the Boltzmann equation with quantized rotational and vibrational energy","volume":"352","author":"Clarke","year":"2018","journal-title":"J Comput Phys"},{"issue":"3","key":"10.1016\/j.cnsns.2022.107079_b25","doi-asserted-by":"crossref","first-page":"1893","DOI":"10.1007\/s10915-018-0864-x","article-title":"BGK polyatomic model for rarefied flows","volume":"78","author":"Bernard","year":"2019","journal-title":"J Sci Comput"},{"key":"10.1016\/j.cnsns.2022.107079_b26","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.euromechflu.2019.11.006","article-title":"A BGK model for high temperature rarefied gas flows","volume":"80","author":"Baranger","year":"2020","journal-title":"Eur J Mech B\/Fluids"},{"issue":"6","key":"10.1016\/j.cnsns.2022.107079_b27","doi-asserted-by":"crossref","DOI":"10.1063\/1.5039479","article-title":"An improved discrete velocity method (DVM) for efficient simulation of flows in all flow regimes","volume":"30","author":"Yang","year":"2018","journal-title":"Phys Fluids"},{"issue":"6","key":"10.1016\/j.cnsns.2022.107079_b28","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevE.98.063313","article-title":"Improved fully implicit discrete-velocity method for efficient simulation of flows in all flow regimes","volume":"98","author":"Yang","year":"2018","journal-title":"Phys Rev E"},{"key":"10.1016\/j.cnsns.2022.107079_b29","doi-asserted-by":"crossref","DOI":"10.1016\/j.cnsns.2020.105473","article-title":"A novel multiscale discrete velocity method for model kinetic equations","volume":"92","author":"Yuan","year":"2021","journal-title":"Commun Nonlinear Sci Numer Simul"},{"issue":"2","key":"10.1016\/j.cnsns.2022.107079_b30","doi-asserted-by":"crossref","first-page":"708","DOI":"10.1016\/j.jcp.2003.08.022","article-title":"Study on gas kinetic unified algorithm for flows from rarefied transition to continuum","volume":"193","author":"Li","year":"2004","journal-title":"J Comput Phys"},{"key":"10.1016\/j.cnsns.2022.107079_b31","doi-asserted-by":"crossref","DOI":"10.1016\/j.jcp.2020.109938","article-title":"On derivation and verification of a kinetic model for quantum vibrational energy of polyatomic gases in the gas-kinetic unified algorithm","volume":"435","author":"Wu","year":"2021","journal-title":"J Comput Phys"},{"key":"10.1016\/j.cnsns.2022.107079_b32","doi-asserted-by":"crossref","DOI":"10.1016\/j.jcp.2020.109245","article-title":"Can we find steady-state solutions to multiscale rarefied gas flows within dozens of iterations?","volume":"407","author":"Su","year":"2020","journal-title":"J Comput Phys"},{"key":"10.1016\/j.cnsns.2022.107079_b33","doi-asserted-by":"crossref","DOI":"10.1016\/j.cma.2020.113548","article-title":"Multiscale simulation of molecular gas flows by the general synthetic iterative scheme","volume":"373","author":"Su","year":"2021","journal-title":"Comput Methods Appl Mech Engrg"},{"issue":"20","key":"10.1016\/j.cnsns.2022.107079_b34","doi-asserted-by":"crossref","first-page":"7747","DOI":"10.1016\/j.jcp.2010.06.032","article-title":"A unified gas-kinetic scheme for continuum and rarefied flows","volume":"229","author":"Xu","year":"2010","journal-title":"J Comput Phys"},{"year":"2015","series-title":"Direct modeling for computational fluid dynamics: Construction and application of unified gas-kinetic schemes","author":"Xu","key":"10.1016\/j.cnsns.2022.107079_b35"},{"year":"2021","series-title":"A unified computational fluid dynamics framework from rarefied to continuum regimes","author":"Xu","key":"10.1016\/j.cnsns.2022.107079_b36"},{"key":"10.1016\/j.cnsns.2022.107079_b37","doi-asserted-by":"crossref","first-page":"96","DOI":"10.1016\/j.jcp.2013.11.030","article-title":"Unified gas-kinetic scheme for diatomic molecular simulations in all flow regimes","volume":"259","author":"Liu","year":"2014","journal-title":"J Comput Phys"},{"issue":"3","key":"10.1016\/j.cnsns.2022.107079_b38","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevE.88.033305","article-title":"Discrete unified gas kinetic scheme for all Knudsen number flows: Low-speed isothermal case","volume":"88","author":"Guo","year":"2013","journal-title":"Phys Rev E"},{"issue":"3","key":"10.1016\/j.cnsns.2022.107079_b39","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevE.91.033313","article-title":"Discrete unified gas kinetic scheme for all Knudsen number flows. II. Thermal compressible case","volume":"91","author":"Guo","year":"2015","journal-title":"Phys Rev E"},{"issue":"9","key":"10.1016\/j.cnsns.2022.107079_b40","doi-asserted-by":"crossref","DOI":"10.1063\/5.0021332","article-title":"A simplified discrete unified gas kinetic scheme for incompressible flow","volume":"32","author":"Zhong","year":"2020","journal-title":"Phys Fluids"},{"key":"10.1016\/j.cnsns.2022.107079_b41","doi-asserted-by":"crossref","first-page":"313","DOI":"10.1016\/j.compfluid.2018.03.023","article-title":"A conserved discrete unified gas kinetic scheme for microchannel gas flows in all flow regimes","volume":"167","author":"Liu","year":"2018","journal-title":"Comput & Fluids"},{"issue":"4","key":"10.1016\/j.cnsns.2022.107079_b42","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevE.100.043305","article-title":"Conserved discrete unified gas-kinetic scheme with unstructured discrete velocity space","volume":"100","author":"Chen","year":"2019","journal-title":"Phys Rev E"},{"key":"10.1016\/j.cnsns.2022.107079_b43","doi-asserted-by":"crossref","first-page":"6","DOI":"10.1186\/s42774-020-00058-3","article-title":"Progress of discrete unified gas-kinetic scheme for multiscale flows","volume":"3","author":"Guo","year":"2021","journal-title":"Adv Aerodyn"},{"key":"10.1016\/j.cnsns.2022.107079_b44","doi-asserted-by":"crossref","first-page":"112","DOI":"10.1016\/j.euromechflu.2016.12.005","article-title":"Numerical modeling of high-speed rarefied gas flows over blunt bodies using model kinetic equations","volume":"64","author":"Titarev","year":"2017","journal-title":"Eur J Mech B\/Fluids"},{"key":"10.1016\/j.cnsns.2022.107079_b45","doi-asserted-by":"crossref","DOI":"10.1016\/j.cpc.2019.106972","article-title":"A conservative implicit scheme for steady state solutions of diatomic gas flow in all flow regimes","volume":"247","author":"Yuan","year":"2020","journal-title":"Comput Phys Comm"},{"key":"10.1016\/j.cnsns.2022.107079_b46","doi-asserted-by":"crossref","first-page":"162","DOI":"10.1016\/j.ijheatmasstransfer.2016.06.010","article-title":"Effect of vibrational degrees of freedom on the heat transfer in polyatomic gases confined between parallel plates","volume":"102","author":"Tantos","year":"2016","journal-title":"Int J Heat Mass Transfer"},{"issue":"4","key":"10.1016\/j.cnsns.2022.107079_b47","doi-asserted-by":"crossref","first-page":"449","DOI":"10.1063\/1.1724417","article-title":"Rotational and vibrational relaxation in diatomic gases","volume":"2","author":"Parker","year":"1959","journal-title":"Phys Fluids"},{"issue":"3","key":"10.1016\/j.cnsns.2022.107079_b48","doi-asserted-by":"crossref","first-page":"447","DOI":"10.1063\/1.857740","article-title":"Rotational\u2013translational energy transfer in rarefied nonequilibrium flows","volume":"2","author":"Boyd","year":"1990","journal-title":"Phys Fluids"},{"issue":"1","key":"10.1016\/j.cnsns.2022.107079_b49","doi-asserted-by":"crossref","first-page":"12","DOI":"10.1063\/1.1761077","article-title":"Kinetic-theoretic description of the formation of a shock wave","volume":"8","author":"Chu","year":"1965","journal-title":"Phys Fluids"},{"issue":"20","key":"10.1016\/j.cnsns.2022.107079_b50","doi-asserted-by":"crossref","first-page":"6643","DOI":"10.1016\/j.jcp.2012.05.019","article-title":"A unified gas kinetic scheme with moving mesh and velocity space adaptation","volume":"231","author":"Chen","year":"2012","journal-title":"J Comput Phys"},{"key":"10.1016\/j.cnsns.2022.107079_b51","doi-asserted-by":"crossref","DOI":"10.1016\/j.jcp.2020.109751","article-title":"Ray effect in rarefied flow simulation","volume":"422","author":"Zhu","year":"2020","journal-title":"J Comput Phys"},{"issue":"1","key":"10.1016\/j.cnsns.2022.107079_b52","doi-asserted-by":"crossref","first-page":"120","DOI":"10.1006\/jcph.1995.1084","article-title":"Convergence to steady state solutions of the Euler equations on unstructured grids with limiters","volume":"118","author":"Venkatakrishnan","year":"1995","journal-title":"J Comput Phys"},{"issue":"12","key":"10.1016\/j.cnsns.2022.107079_b53","doi-asserted-by":"crossref","first-page":"2608","DOI":"10.1016\/j.camwa.2016.04.025","article-title":"Discrete unified gas kinetic scheme with a force term for incompressible fluid flows","volume":"71","author":"Wu","year":"2016","journal-title":"Comput Math Appl"},{"issue":"5","key":"10.1016\/j.cnsns.2022.107079_b54","doi-asserted-by":"crossref","first-page":"1054","DOI":"10.2514\/1.27432","article-title":"One-dimensional multiple-temperature gas-kinetic Bhatnagar-Gross-Krook scheme for shock wave computation","volume":"46","author":"Cai","year":"2008","journal-title":"AIAA J"},{"key":"10.1016\/j.cnsns.2022.107079_b55","doi-asserted-by":"crossref","first-page":"305","DOI":"10.1016\/j.jcp.2016.03.014","article-title":"A unified gas-kinetic scheme for continuum and rarefied flows IV: Full Boltzmann and model equations","volume":"314","author":"Liu","year":"2016","journal-title":"J Comput Phys"},{"issue":"1","key":"10.1016\/j.cnsns.2022.107079_b56","doi-asserted-by":"crossref","DOI":"10.1063\/5.0036203","article-title":"Modeling and computation for non-equilibrium gas dynamics: Beyond single relaxation time kinetic models","volume":"33","author":"Xu","year":"2021","journal-title":"Phys Fluids"},{"issue":"6","key":"10.1016\/j.cnsns.2022.107079_b57","doi-asserted-by":"crossref","first-page":"1243","DOI":"10.2514\/1.10950","article-title":"Experimental and numerical study of hypersonic rarefied gas flow over flat plates","volume":"43","author":"Tsuboi","year":"2005","journal-title":"AIAA J"}],"container-title":["Communications in Nonlinear Science and Numerical Simulation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1007570422005664?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1007570422005664?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,1,30]],"date-time":"2024-01-30T11:42:32Z","timestamp":1706614952000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1007570422005664"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,5]]},"references-count":57,"alternative-id":["S1007570422005664"],"URL":"https:\/\/doi.org\/10.1016\/j.cnsns.2022.107079","relation":{},"ISSN":["1007-5704"],"issn-type":[{"type":"print","value":"1007-5704"}],"subject":[],"published":{"date-parts":[[2023,5]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Unified gas-kinetic scheme with simplified multi-scale numerical flux for thermodynamic non-equilibrium flow in all flow regimes","name":"articletitle","label":"Article Title"},{"value":"Communications in Nonlinear Science and Numerical Simulation","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cnsns.2022.107079","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"107079"}}