{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,15]],"date-time":"2024-09-15T16:47:56Z","timestamp":1726418876590},"reference-count":39,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2019,12,1]],"date-time":"2019-12-01T00:00:00Z","timestamp":1575158400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001824","name":"Czech Science Foundation","doi-asserted-by":"publisher","award":["17-03224S"],"id":[{"id":"10.13039\/501100001824","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Communications in Nonlinear Science and Numerical Simulation"],"published-print":{"date-parts":[[2019,12]]},"DOI":"10.1016\/j.cnsns.2019.104888","type":"journal-article","created":{"date-parts":[[2019,6,28]],"date-time":"2019-06-28T00:21:11Z","timestamp":1561681271000},"page":"104888","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":11,"special_numbering":"C","title":["Delay-dependent stability switches in fractional differential equations"],"prefix":"10.1016","volume":"79","author":[{"given":"Jan","family":"\u010cerm\u00e1k","sequence":"first","affiliation":[]},{"given":"Tom\u00e1\u0161","family":"Kisela","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.cnsns.2019.104888_bib0001","article-title":"Introduction to the theory and applications of functional differential equations","author":"Kolmanovskii","year":"1999","journal-title":"Dordrecht: Kluwer Academic Publishers"},{"year":"2000","series-title":"Applications of fractional calculus in physics","author":"Hilfer","key":"10.1016\/j.cnsns.2019.104888_bib0002"},{"year":"2018","series-title":"Fractional calculus: an introduction for physicists","author":"Herrmann","key":"10.1016\/j.cnsns.2019.104888_bib0003"},{"year":"1999","series-title":"Fractional differential equations","author":"Podlubn\u00fd","key":"10.1016\/j.cnsns.2019.104888_bib0004"},{"year":"2014","series-title":"Basic theory of fractional differential equations","author":"Zhou","key":"10.1016\/j.cnsns.2019.104888_bib0005"},{"issue":"1","key":"10.1016\/j.cnsns.2019.104888_bib0006","doi-asserted-by":"crossref","first-page":"168","DOI":"10.1007\/s40435-016-0224-3","article-title":"A delay fractional order model for the co-infection of malaria and HIV\/AIDS","volume":"5","author":"Carvalho","year":"2017","journal-title":"Int J Dynam Control"},{"key":"10.1016\/j.cnsns.2019.104888_bib0007","doi-asserted-by":"crossref","first-page":"185","DOI":"10.1016\/j.compag.2009.08.005","article-title":"Fractional order controller robust to time delay variations for water distribution in an irrigation main canal pool","volume":"69","author":"Feliu-Batlle","year":"2009","journal-title":"Comput Electron Agric"},{"issue":"1","key":"10.1016\/j.cnsns.2019.104888_bib0008","first-page":"31","article-title":"Stability and stabilization of fractional order time delay systems","volume":"61","author":"Lazarevi\u0107","year":"2011","journal-title":"Sci Tech Rev"},{"issue":"31","key":"10.1016\/j.cnsns.2019.104888_bib0009","doi-asserted-by":"crossref","first-page":"677","DOI":"10.1016\/j.neucom.2017.09.018","article-title":"Hopf bifurcation analysis of a delayed fractional-order genetic regulatory network model","volume":"275","author":"Tao","year":"2018","journal-title":"Neurocomputing"},{"key":"10.1016\/j.cnsns.2019.104888_bib0010","first-page":"187","article-title":"Stability switches in linear scalar neutral delay equations","volume":"34","author":"Freedman","year":"1991","journal-title":"Funkcial Ekvac"},{"issue":"1","key":"10.1016\/j.cnsns.2019.104888_bib0011","first-page":"43","article-title":"Asymptotic stability and stability switches in a linear integro-differential system","volume":"3","author":"Matsunaga","year":"2011","journal-title":"Differ Eq Appl"},{"key":"10.1016\/j.cnsns.2019.104888_bib0012","doi-asserted-by":"crossref","first-page":"5657","DOI":"10.3934\/dcds.2016048","article-title":"On parameter dependence of exponential stability of equilibrium solutions in differential equations with a\u00a0single constant delay","volume":"36","author":"Nishiguchi","year":"2016","journal-title":"Discrete Contin Dyn Syst"},{"key":"10.1016\/j.cnsns.2019.104888_bib0013","doi-asserted-by":"crossref","first-page":"6677","DOI":"10.1109\/ACCESS.2017.2789165","article-title":"Switching laws design for stability of finite and infinite delayed switched systems with stable and unstable modes","volume":"6","author":"Li","year":"2018","journal-title":"IEEE Access"},{"key":"10.1016\/j.cnsns.2019.104888_bib0014","series-title":"Proceedings of IMACS-SMC. Lille; France","first-page":"963","article-title":"Stability results on fractional differential equations with applications to control processing","author":"Matignon","year":"1996"},{"year":"2010","series-title":"Control of complex nonlinear systems with delay","author":"H\u00f6vel","key":"10.1016\/j.cnsns.2019.104888_bib0015"},{"year":"2010","series-title":"Stability and stabilization of time-delay systems: an eigenvalue-based approach","author":"Michiels","key":"10.1016\/j.cnsns.2019.104888_bib0016"},{"year":"2011","series-title":"Fractional-order nonlinear systems: modeling, analysis and simulation","author":"Petr\u00e1\u0161","key":"10.1016\/j.cnsns.2019.104888_bib0017"},{"key":"10.1016\/j.cnsns.2019.104888_bib0018","doi-asserted-by":"crossref","first-page":"118","DOI":"10.1016\/j.plrev.2017.11.003","article-title":"Network science of biological systems at different scales: a review","volume":"24","author":"Gosak","year":"2018","journal-title":"Phys Life Rev"},{"key":"10.1016\/j.cnsns.2019.104888_bib0019","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.physrep.2016.10.006","article-title":"Statistical physics of vaccination","volume":"664","author":"Wang","year":"2016","journal-title":"Phys Rep"},{"key":"10.1016\/j.cnsns.2019.104888_bib0020","doi-asserted-by":"crossref","first-page":"1501","DOI":"10.1016\/j.camwa.2011.03.067","article-title":"A graphical test for the interval stability of fractional-delay systems","volume":"62","author":"Yu","year":"2011","journal-title":"Comput Math Appl"},{"issue":"11","key":"10.1016\/j.cnsns.2019.104888_sbref0020","doi-asserted-by":"crossref","first-page":"9","DOI":"10.1115\/1.4041083","article-title":"Stability switches of a class of fractional-delay systems with delay-dependent coefficients","volume":"13","author":"Teng","year":"2018","journal-title":"J Comput Nonlinear Dynam"},{"key":"10.1016\/j.cnsns.2019.104888_bib0022","doi-asserted-by":"crossref","first-page":"892","DOI":"10.1002\/rnc.1734","article-title":"On characteristic roots and stability charts of delay differential equations","volume":"22","author":"Breda","year":"2012","journal-title":"Int J\u00a0Robust Nonlinear Control"},{"key":"10.1016\/j.cnsns.2019.104888_bib0023","doi-asserted-by":"crossref","first-page":"742","DOI":"10.1016\/j.aml.2010.12.020","article-title":"The stability cone for a delay differential matrix equation","volume":"24","author":"Khokhlova","year":"2011","journal-title":"Appl Math Lett"},{"key":"10.1016\/j.cnsns.2019.104888_bib0024","first-page":"145","article-title":"Stability switches in a system of linear differential equations with diagonal delay","volume":"212","author":"Matsunaga","year":"2009","journal-title":"Appl Math Comput"},{"key":"10.1016\/j.cnsns.2019.104888_bib0025","doi-asserted-by":"crossref","first-page":"1791","DOI":"10.1016\/j.automatica.2006.05.008","article-title":"Robust stability analysis of linear time-delay systems by lambert w function: some extreme point results","volume":"42","author":"Shinozaki","year":"2006","journal-title":"Automatica"},{"key":"10.1016\/j.cnsns.2019.104888_bib0026","doi-asserted-by":"crossref","first-page":"409","DOI":"10.1007\/s11071-006-9094-0","article-title":"Stability analysis of linear fractional differential system with multiple time delays","volume":"48","author":"Deng","year":"2007","journal-title":"Nonlinear Dyn"},{"key":"10.1016\/j.cnsns.2019.104888_bib0027","first-page":"1515","article-title":"Asymptotic properties of fractional delay differential equations","volume":"218","author":"Krol","year":"2011","journal-title":"Appl Math Comput"},{"issue":"1\u20133","key":"10.1016\/j.cnsns.2019.104888_bib0028","doi-asserted-by":"crossref","first-page":"108","DOI":"10.1016\/j.cnsns.2015.07.008","article-title":"Stability regions for fractional differential systems with a time delay","volume":"31","author":"\u010cerm\u00e1k","year":"2016","journal-title":"Commun Nonlinear Sci Numer Simul"},{"issue":"2","key":"10.1016\/j.cnsns.2019.104888_bib0029","doi-asserted-by":"crossref","first-page":"215","DOI":"10.1007\/s12043-013-0569-5","article-title":"Stability analysis of a class of fractional delay differential equations","volume":"81","author":"Bhalekar","year":"2013","journal-title":"Pramana-J Phys"},{"key":"10.1016\/j.cnsns.2019.104888_bib0030","doi-asserted-by":"crossref","first-page":"4027","DOI":"10.1016\/j.cam.2012.03.010","article-title":"Analytical and numerical methods for the stability analysis of linear fractional delay differential equations","volume":"236","author":"Kaslik","year":"2012","journal-title":"J Comput Appl Math"},{"key":"10.1016\/j.cnsns.2019.104888_bib0031","first-page":"336","article-title":"Fractional differential equations with a constant delay: stability and asymptotics of solutions","volume":"298","author":"\u010cerm\u00e1k","year":"2017","journal-title":"Appl Math Comput"},{"year":"2006","series-title":"Theory and applications of fractional differential equations","author":"Kilbas","key":"10.1016\/j.cnsns.2019.104888_bib0032"},{"year":"1966","series-title":"Geometry of polynomials","author":"Marden","key":"10.1016\/j.cnsns.2019.104888_bib0033"},{"key":"10.1016\/j.cnsns.2019.104888_bib0034","doi-asserted-by":"crossref","first-page":"621","DOI":"10.1007\/s11071-012-0601-1","article-title":"Fractional dynamical system and its linearization theorem","volume":"71","author":"Li","year":"2013","journal-title":"Nonlinear Dyn"},{"key":"10.1016\/j.cnsns.2019.104888_bib0035","first-page":"427","article-title":"Hopf bifurcation and global periodic solutions in a delayed predator-prey system","volume":"177","author":"Yan","year":"2006","journal-title":"Appl Math Comput"},{"issue":"2","key":"10.1016\/j.cnsns.2019.104888_bib0036","doi-asserted-by":"crossref","first-page":"400","DOI":"10.1515\/fca-2015-0026","article-title":"Solving fractional delay differential equations: a new approach","volume":"18","author":"Daftardar-Gejji","year":"2015","journal-title":"Fract Calc Appl Anal"},{"key":"10.1016\/j.cnsns.2019.104888_bib0037","doi-asserted-by":"crossref","first-page":"269","DOI":"10.1016\/j.mechrescom.2005.08.010","article-title":"Finite time stability analysis of PD\u03b1 fractional control of robot time-delay systems","volume":"33","author":"Lazarevi\u0107","year":"2006","journal-title":"Mech Res Commun"},{"key":"10.1016\/j.cnsns.2019.104888_bib0038","doi-asserted-by":"crossref","first-page":"1415","DOI":"10.1177\/1077546304042058","article-title":"Dynamics and trajectory tracking control of a two-link robot manipulator","volume":"10","author":"Green","year":"2004","journal-title":"J Vib Control"},{"issue":"3","key":"10.1016\/j.cnsns.2019.104888_bib0039","doi-asserted-by":"crossref","first-page":"783","DOI":"10.1002\/asjc.677","article-title":"Fractional order controller for a flexible link manipulator robot","volume":"15","author":"Delavari","year":"2013","journal-title":"Asian J Control"}],"container-title":["Communications in Nonlinear Science and Numerical Simulation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1007570419302102?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1007570419302102?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,9,18]],"date-time":"2019-09-18T18:43:44Z","timestamp":1568832224000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1007570419302102"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,12]]},"references-count":39,"alternative-id":["S1007570419302102"],"URL":"https:\/\/doi.org\/10.1016\/j.cnsns.2019.104888","relation":{},"ISSN":["1007-5704"],"issn-type":[{"type":"print","value":"1007-5704"}],"subject":[],"published":{"date-parts":[[2019,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Delay-dependent stability switches in fractional differential equations","name":"articletitle","label":"Article Title"},{"value":"Communications in Nonlinear Science and Numerical Simulation","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cnsns.2019.104888","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"104888"}}