{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,23]],"date-time":"2024-08-23T20:25:09Z","timestamp":1724444709880},"reference-count":57,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2019,7,1]],"date-time":"2019-07-01T00:00:00Z","timestamp":1561939200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100002261","name":"Russian Foundation for Basic Research","doi-asserted-by":"publisher","award":["18-29-03228"],"id":[{"id":"10.13039\/501100002261","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Communications in Nonlinear Science and Numerical Simulation"],"published-print":{"date-parts":[[2019,7]]},"DOI":"10.1016\/j.cnsns.2019.02.022","type":"journal-article","created":{"date-parts":[[2019,2,28]],"date-time":"2019-02-28T18:23:05Z","timestamp":1551378185000},"page":"379-390","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":19,"special_numbering":"C","title":["Functional separable solutions of nonlinear convection\u2013diffusion equations with variable coefficients"],"prefix":"10.1016","volume":"73","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-2610-0590","authenticated-orcid":false,"given":"Andrei D.","family":"Polyanin","sequence":"first","affiliation":[]}],"member":"78","reference":[{"issue":"3","key":"10.1016\/j.cnsns.2019.02.022_sbref0001","first-page":"492","article-title":"Group properties of nonlinear heat equations","volume":"125","author":"Ovsiannikov","year":"1959","journal-title":"Doklady Acad Nauk USSR"},{"issue":"6","key":"10.1016\/j.cnsns.2019.02.022_bib0002","doi-asserted-by":"crossref","first-page":"115","DOI":"10.1016\/0041-5553(82)90102-1","article-title":"On invariant solutions of the equation of non-linear heat conduction with a source","volume":"22","author":"Dorodnitsyn","year":"1982","journal-title":"USSR Comput Math Math Phys"},{"issue":"5","key":"10.1016\/j.cnsns.2019.02.022_bib0003","doi-asserted-by":"crossref","first-page":"1222","DOI":"10.1007\/BF01098785","article-title":"A quasilinear equation of heat conduction with a source: peaking, localization, symmetry, exact solutions, asymptotic behavior, structures","volume":"41","author":"Galaktionov","year":"1988","journal-title":"J Soviet Math"},{"issue":"2","key":"10.1016\/j.cnsns.2019.02.022_bib0004","doi-asserted-by":"crossref","first-page":"211","DOI":"10.1007\/BF01019332","article-title":"On exact solutions of families of fisher equations","volume":"94","author":"Kudryashov","year":"1993","journal-title":"Theor Math Phys"},{"key":"10.1016\/j.cnsns.2019.02.022_bib0005","doi-asserted-by":"crossref","first-page":"250","DOI":"10.1016\/0167-2789(94)90017-5","article-title":"Symmetry reductions and exact solutions of a class of nonlinear heat equations","volume":"70","author":"Clarkson","year":"1994","journal-title":"Phys D"},{"key":"10.1016\/j.cnsns.2019.02.022_sbref0006","doi-asserted-by":"crossref","DOI":"10.1016\/0362-546X(94)90208-9","article-title":"Quasilinear heat equations with first-order sign-invariants and new explicit solutions","volume":"23","author":"Galaktionov","year":"1994","journal-title":"Nonlinear Anal Theor Meth Appl"},{"key":"10.1016\/j.cnsns.2019.02.022_bib0007","series-title":"Exact solutions and Conservation Laws","article-title":"CRC handbook of lie group analysis of differential equations. symmetries","volume":"vol.\u00a01","author":"Ibragimov","year":"1994"},{"issue":"2","key":"10.1016\/j.cnsns.2019.02.022_bib0008","doi-asserted-by":"crossref","first-page":"315","DOI":"10.1016\/S0020-7462(97)00013-9","article-title":"Separation of variables for the 1-dimensional non-linear diffusion equation","volume":"33","author":"Doyle","year":"1998","journal-title":"IntJ \u00a0Non-Linear Mech"},{"issue":"3","key":"10.1016\/j.cnsns.2019.02.022_bib0009","doi-asserted-by":"crossref","first-page":"223","DOI":"10.1093\/imamat\/64.3.223","article-title":"On direct, implicit reductions of a nonlinear diffusion equation with an arbitrary function - generalizations of clarkson\u2019s and kruskal\u2019s method","volume":"64","author":"Hood","year":"2000","journal-title":"IMA J Appl Math"},{"key":"10.1016\/j.cnsns.2019.02.022_bib0010","doi-asserted-by":"crossref","first-page":"44","DOI":"10.1016\/S0022-247X(02)00214-7","article-title":"Separation of variables of a generalized porous medium equation with nonlinear source","volume":"275","author":"Estevez","year":"2002","journal-title":"J Math Anal Appl"},{"key":"10.1016\/j.cnsns.2019.02.022_sbref0011","series-title":"Handbook of nonlinear equations of mathematical physics","author":"Polyanin","year":"2002"},{"key":"10.1016\/j.cnsns.2019.02.022_bib0012","doi-asserted-by":"crossref","first-page":"1401","DOI":"10.1088\/0305-4470\/36\/5\/315","article-title":"Differential constraints and exact solutions of nonlinear diffusion equations","volume":"36","author":"Kaptsov","year":"2003","journal-title":"J Phys A"},{"key":"10.1016\/j.cnsns.2019.02.022_sbref0013","series-title":"Solution methods for nonlinear equations of mathematical physics and mechanics","author":"Polyanin","year":"2005"},{"issue":"33","key":"10.1016\/j.cnsns.2019.02.022_bib0014","doi-asserted-by":"crossref","first-page":"10049","DOI":"10.1088\/1751-8113\/40\/33\/009","article-title":"New conditional symmetries and exact solutions of nonlinear reaction-diffusion-convection equations","volume":"40","author":"Cherniha","year":"2007","journal-title":"J Phys A"},{"key":"10.1016\/j.cnsns.2019.02.022_bib0015","series-title":"Exact solutions and invariant subspaces of nonlinear partial differential equations in mechanics and physics","author":"Galaktionov","year":"2006"},{"key":"10.1016\/j.cnsns.2019.02.022_sbref0016","series-title":"Handbook of nonlinear partial differential equations","author":"Polyanin","year":"2012"},{"key":"10.1016\/j.cnsns.2019.02.022_bib0017","doi-asserted-by":"crossref","first-page":"23","DOI":"10.1016\/j.jmaa.2013.02.010","article-title":"New conditional symmetries and exact solutions of reaction-diffusion-convection equations with exponential nonlinearities","volume":"403","author":"Cherniha","year":"2013","journal-title":"J Math Anal Appl"},{"key":"10.1016\/j.cnsns.2019.02.022_bib0018","series-title":"Nonlinear reaction-diffusion-convection equations: Lie and conditional symmetry, exact solutions and their applications","author":"Cherniha","year":"2018"},{"issue":"2","key":"10.1016\/j.cnsns.2019.02.022_bib0019","doi-asserted-by":"crossref","first-page":"1363","DOI":"10.1016\/j.jmaa.2006.08.056","article-title":"Extended group analysis of variable coefficient reaction-diffusion equations with power nonlinearities","volume":"330","author":"Vaneeva","year":"2007","journal-title":"J Math Anal Appl"},{"issue":"1","key":"10.1016\/j.cnsns.2019.02.022_bib0020","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s10440-008-9280-9","article-title":"Enhanced group analysis and exact solutions of variable coefficient semilinear diffusion equations with a power source","volume":"106","author":"Vaneeva","year":"2009","journal-title":"Acta Appl Math"},{"key":"10.1016\/j.cnsns.2019.02.022_bib0021","doi-asserted-by":"crossref","first-page":"225","DOI":"10.1016\/j.jmaa.2012.05.084","article-title":"Extended group analysis of variable coefficient reaction-diffusion equations with exponential nonlinearities","volume":"396","author":"Vaneeva","year":"2012","journal-title":"J Math Anal Appl"},{"key":"10.1016\/j.cnsns.2019.02.022_bib0022","unstructured":"Vaneeva O, Zhalij A. Group classification of variable coefficient quasilinear reaction-diffusion equations. 2013. Publ. L\u2019Institute Math\u00e9matique (Nouvelle s\u00e9rie). 94, 108, 81\u201390."},{"key":"10.1016\/j.cnsns.2019.02.022_bib0023","doi-asserted-by":"crossref","first-page":"282","DOI":"10.1016\/j.amc.2018.10.092","article-title":"Functional separable solutions of nonlinear reaction\u2013diffusion equations with variable coefficients","volume":"347","author":"Polyanin","year":"2019","journal-title":"Appl Math Comput"},{"key":"10.1016\/j.cnsns.2019.02.022_bib0024","doi-asserted-by":"crossref","first-page":"30","DOI":"10.1016\/j.amc.2014.12.138","article-title":"Symmetry solutions for reaction-diffusion equations with spatially dependent diffusivity","volume":"254","author":"Bradshaw-Hajek","year":"2015","journal-title":"Appl Math Comput"},{"key":"10.1016\/j.cnsns.2019.02.022_bib0025","doi-asserted-by":"crossref","first-page":"1461","DOI":"10.1088\/0305-4470\/32\/8\/013","article-title":"Nonclassical symmetry reductions of a porous medium equation with convection","volume":"32","author":"Gandarias","year":"1999","journal-title":"J Phys A"},{"issue":"30","key":"10.1016\/j.cnsns.2019.02.022_bib0026","doi-asserted-by":"crossref","first-page":"7547","DOI":"10.1088\/0305-4470\/37\/30\/011","article-title":"New results on group classification of nonlinear diffusion-convection equations","volume":"37","author":"Popovych","year":"2004","journal-title":"J Phys A"},{"issue":"2","key":"10.1016\/j.cnsns.2019.02.022_bib0027","doi-asserted-by":"crossref","first-page":"322","DOI":"10.1016\/j.cam.2005.11.008","article-title":"On the group classification of variable-coefficient nonlinear diffusion-convection equations","volume":"197","author":"Ivanova","year":"2006","journal-title":"J Comput Appl Math"},{"issue":"2","key":"10.1016\/j.cnsns.2019.02.022_bib0028","first-page":"139","article-title":"Exact solutions of diffusion-convection equations","volume":"5","author":"Ivanova","year":"2008","journal-title":"Dyn PDE"},{"issue":"2","key":"10.1016\/j.cnsns.2019.02.022_bib0029","doi-asserted-by":"crossref","first-page":"100","DOI":"10.1134\/S1995080210020034","article-title":"Group analysis of variable coefficient diffusion-convection equations. I Enhanced group classification","volume":"31","author":"Vaneeva","year":"2010","journal-title":"Lobachevskii J Math"},{"key":"10.1016\/j.cnsns.2019.02.022_bib0030","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1023\/A:1012667617936","article-title":"The structure of Lie algebras and the classification problem for partial differential equations","volume":"69","author":"Basarab-Horwath","year":"2001","journal-title":"Acta Appl Math"},{"key":"10.1016\/j.cnsns.2019.02.022_bib0031","unstructured":"Lagno V.I., Spichak S.V., Stognii V.I.. Symmetry analysis of evolution type equations, Institute of Computer Sciences, Moscow\u2013Izhevsk. 2004. In Russian."},{"key":"10.1016\/j.cnsns.2019.02.022_bib0032","doi-asserted-by":"crossref","first-page":"982","DOI":"10.1016\/j.jmaa.2007.07.063","article-title":"Separation of variables and exact solutions to nonlinear diffusion equations with x-dependent convection and absorption","volume":"339","author":"Jia","year":"2008","journal-title":"J Math Anal Appl"},{"key":"10.1016\/j.cnsns.2019.02.022_bib0033","doi-asserted-by":"crossref","first-page":"278","DOI":"10.1016\/j.amc.2018.01.047","article-title":"Riccati\u2013Ermakov systems and explicit solutions for variable coefficient reaction\u2013diffusion equations","volume":"329","author":"Pereira","year":"2018","journal-title":"Appl Math Comput"},{"key":"10.1016\/j.cnsns.2019.02.022_bib0034","doi-asserted-by":"crossref","first-page":"98","DOI":"10.1016\/j.cnsns.2015.11.023","article-title":"Lie symmetry properties of nonlinear reaction-diffusion equations with gradient-dependent diffusivity","volume":"36","author":"Cherniha","year":"2016","journal-title":"Commun Nonlinear Sci Numer Simul"},{"key":"10.1016\/j.cnsns.2019.02.022_bib0035","doi-asserted-by":"crossref","first-page":"560","DOI":"10.1016\/j.cnsns.2016.05.022","article-title":"Symmetry classification of time-fractional diffusion equation","volume":"42","author":"Naeem","year":"2017","journal-title":"Commun Nonlinear Sci Numer Simul"},{"key":"10.1016\/j.cnsns.2019.02.022_bib0036","doi-asserted-by":"crossref","first-page":"253","DOI":"10.1016\/j.cnsns.2018.06.024","article-title":"Exact solutions of nonlinear diffusion-convection-reaction equation: a lie symmetry analysis approach","volume":"67","author":"Molati","year":"2019","journal-title":"Commun Nonlinear Sci Numer Simul"},{"key":"10.1016\/j.cnsns.2019.02.022_bib0037","series-title":"Nonlinear reaction-diffusion systems: conditional symmetry, exact solutions and their applications in biology","author":"Cherniha","year":"2017"},{"key":"10.1016\/j.cnsns.2019.02.022_bib0038","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1016\/j.aml.2015.09.014","article-title":"Splitting in systems of PDEs for two-phase multicomponent flow in porous media","volume":"53","author":"Borazjani","year":"2016","journal-title":"Appl Math Lett"},{"key":"10.1016\/j.cnsns.2019.02.022_bib0039","doi-asserted-by":"crossref","first-page":"142","DOI":"10.1016\/j.aml.2017.08.013","article-title":"Analytical properties of the perturbed fitzhugh-nagumo model","volume":"76","author":"Kudryashov","year":"2018","journal-title":"Appl Math Lett"},{"key":"10.1016\/j.cnsns.2019.02.022_bib0040","doi-asserted-by":"crossref","first-page":"448","DOI":"10.1016\/j.jmaa.2007.04.016","article-title":"On the complete group classification of the reaction-diffusion equation with a delay","volume":"338","author":"Meleshko","year":"2008","journal-title":"J Math Anal Appl"},{"key":"10.1016\/j.cnsns.2019.02.022_bib0041","doi-asserted-by":"crossref","first-page":"115","DOI":"10.1016\/j.ijnonlinmec.2013.03.011","article-title":"Exact solutions of linear and non-linear differential-difference heat and diffusion equations with finite relaxation time","volume":"54","author":"Polyanin","year":"2013","journal-title":"Int J \u00a0Non-Linear Mech"},{"issue":"3","key":"10.1016\/j.cnsns.2019.02.022_bib0042","doi-asserted-by":"crossref","first-page":"409","DOI":"10.1016\/j.cnsns.2013.07.019","article-title":"Exact separable solutions of delay reaction-diffusion equations and other nonlinear partial functional-differential equations","volume":"19","author":"Polyanin","year":"2014","journal-title":"Commun Nonlinear Sci Numer Simul"},{"issue":"3","key":"10.1016\/j.cnsns.2019.02.022_bib0043","doi-asserted-by":"crossref","first-page":"417","DOI":"10.1016\/j.cnsns.2013.07.017","article-title":"Functional constraints method for constructing exact solutions to delay reaction-diffusion equations and more complex nonlinear equations","volume":"19","author":"Polyanin","year":"2014","journal-title":"Commun Nonlinear Sci Numer Simul"},{"key":"10.1016\/j.cnsns.2019.02.022_bib0044","doi-asserted-by":"crossref","first-page":"16","DOI":"10.1016\/j.ijnonlinmec.2013.10.008","article-title":"New generalized and functional separable solutions to non-linear delay reaction-diffusion equations","volume":"59","author":"Polyanin","year":"2014","journal-title":"IntJ \u00a0Non-Linear Mech"},{"key":"10.1016\/j.cnsns.2019.02.022_bib0045","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1016\/j.aml.2014.05.010","article-title":"Nonlinear delay reaction-diffusion equations with varying transfer coefficients: Exact methods and new solutions","volume":"37","author":"Polyanin","year":"2014","journal-title":"Appl Math Lett"},{"key":"10.1016\/j.cnsns.2019.02.022_bib0046","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1016\/j.ijnonlinmec.2014.09.008","article-title":"The functional constraints method: Application to non-linear delay reaction-diffusion equations with varying transfer coefficients","volume":"67","author":"Polyanin","year":"2014","journal-title":"Int J \u00a0Non-Linear Mech"},{"key":"10.1016\/j.cnsns.2019.02.022_bib0047","doi-asserted-by":"crossref","first-page":"38","DOI":"10.1016\/j.aml.2015.01.023","article-title":"Nonlinear delay reaction-diffusion equations: Traveling-wave solutions in elementary functions","volume":"46","author":"Polyanin","year":"2015","journal-title":"Appl Math Lett"},{"issue":"1\u20133","key":"10.1016\/j.cnsns.2019.02.022_bib0048","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1016\/j.cnsns.2014.12.006","article-title":"Symmetry analysis of reaction diffusion equation with distributed delay","volume":"24","author":"Zhao","year":"2015","journal-title":"Commun Nonlinear Sci Numer Simul"},{"key":"10.1016\/j.cnsns.2019.02.022_bib0049","doi-asserted-by":"crossref","first-page":"49","DOI":"10.1016\/j.aml.2018.10.012","article-title":"Generalized traveling-wave solutions of nonlinear reaction\u2013diffusion equations with delay and variable coefficients","volume":"90","author":"Polyanin","year":"2019","journal-title":"Appl Math Lett"},{"key":"10.1016\/j.cnsns.2019.02.022_bib0050","doi-asserted-by":"crossref","first-page":"2676","DOI":"10.1016\/j.cnsns.2013.12.021","article-title":"Generalized and functional separable solutions to nonlinear delay Klein\u2013Gordon equations","volume":"19","author":"Polyanin","year":"2014","journal-title":"Commun Nonlinear Sci Numer Simul"},{"issue":"12","key":"10.1016\/j.cnsns.2019.02.022_bib0051","doi-asserted-by":"crossref","first-page":"3255","DOI":"10.1002\/mma.3769","article-title":"On the complete group classification of the one-dimensional nonlinear Klein\u2013Gordon equation with a delay","volume":"39","author":"Long","year":"2016","journal-title":"Math Methods Appl Sci"},{"issue":"13","key":"10.1016\/j.cnsns.2019.02.022_bib0052","first-page":"4658","article-title":"Symmetry analysis of the nonlinear two-dimensional Klein-Gordon equation with a time-varying delay","volume":"40","author":"Long","year":"2017","journal-title":"Math Methods Appl Sci"},{"key":"10.1016\/j.cnsns.2019.02.022_bib0053","doi-asserted-by":"crossref","first-page":"33","DOI":"10.1016\/j.ijnonlinmec.2014.02.003","article-title":"Non-linear instability and exact solutions to some delay reaction-diffusion systems","volume":"62","author":"Polyanin","year":"2014","journal-title":"Int J \u00a0Non-Linear Mech"},{"key":"10.1016\/j.cnsns.2019.02.022_bib0054","doi-asserted-by":"crossref","first-page":"104","DOI":"10.1016\/j.ijnonlinmec.2015.01.002","article-title":"The generating equations method: Constructing exact solutions to delay reaction-diffusion systems and other non-linear coupled delay PDEs","volume":"71","author":"Polyanin","year":"2015","journal-title":"Int J \u00a0Non-Linear Mech"},{"key":"10.1016\/j.cnsns.2019.02.022_bib0055","series-title":"Handbook of ordinary differential equations: Exact solutions, methods, and problems","author":"Polyanin","year":"2003"},{"key":"10.1016\/j.cnsns.2019.02.022_bib0056","series-title":"Handbook of ordinary differential equations: exact solutions, methods, and problems","author":"Polyanin","year":"2018"},{"key":"10.1016\/j.cnsns.2019.02.022_bib0057","series-title":"Handbook of linear partial differential equations for engineers and scientists","author":"Polyanin","year":"2016"}],"container-title":["Communications in Nonlinear Science and Numerical Simulation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1007570419300553?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1007570419300553?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,9,12]],"date-time":"2022-09-12T21:07:04Z","timestamp":1663016824000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1007570419300553"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,7]]},"references-count":57,"alternative-id":["S1007570419300553"],"URL":"https:\/\/doi.org\/10.1016\/j.cnsns.2019.02.022","relation":{},"ISSN":["1007-5704"],"issn-type":[{"value":"1007-5704","type":"print"}],"subject":[],"published":{"date-parts":[[2019,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Functional separable solutions of nonlinear convection\u2013diffusion equations with variable coefficients","name":"articletitle","label":"Article Title"},{"value":"Communications in Nonlinear Science and Numerical Simulation","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cnsns.2019.02.022","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}