{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,20]],"date-time":"2024-09-20T16:29:54Z","timestamp":1726849794420},"reference-count":57,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2019,7,1]],"date-time":"2019-07-01T00:00:00Z","timestamp":1561939200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Communications in Nonlinear Science and Numerical Simulation"],"published-print":{"date-parts":[[2019,7]]},"DOI":"10.1016\/j.cnsns.2019.01.016","type":"journal-article","created":{"date-parts":[[2019,1,31]],"date-time":"2019-01-31T04:21:19Z","timestamp":1548908479000},"page":"177-194","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":14,"special_numbering":"C","title":["Exponentially fitted methods for solving two-dimensional time fractional damped Klein\u2013Gordon equation with nonlinear source term"],"prefix":"10.1016","volume":"73","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-6448-6877","authenticated-orcid":false,"given":"W.K.","family":"Zahra","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1622-0871","authenticated-orcid":false,"given":"M.A.","family":"Nasr","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.cnsns.2019.01.016_bib0001","series-title":"The analysis of fractional differential equations: an application-oriented exposition using differential operators of Caputo type","author":"Diethelm","year":"2010"},{"key":"10.1016\/j.cnsns.2019.01.016_bib0002","doi-asserted-by":"crossref","first-page":"268","DOI":"10.1016\/j.jcp.2014.06.022","article-title":"A compact difference scheme for a two dimensional fractional Klein\u2013Gordon equation with Neumann boundary conditions","volume":"274","author":"Vong","year":"2014","journal-title":"J Comput Phys"},{"issue":"4","key":"10.1016\/j.cnsns.2019.01.016_bib0003","doi-asserted-by":"crossref","first-page":"1077","DOI":"10.1017\/S0001867800010478","article-title":"Fractional diffusion and fractional heat equation","volume":"32","author":"Angulo","year":"2000","journal-title":"Adv Appl Probab"},{"key":"10.1016\/j.cnsns.2019.01.016_bib0004","unstructured":"I.M. Sokolov, A.V. Chechkin, and J. Klafter, \u201cDistributed-order fractional kinetics,\u201d arXiv Prepr. cond-mat\/0401146, pp. 1\u201318, 2004."},{"issue":"1990","key":"10.1016\/j.cnsns.2019.01.016_bib0005","doi-asserted-by":"crossref","DOI":"10.1098\/rsta.2012.0146","article-title":"Modelling heat transfer in heterogeneous media using fractional calculus","volume":"371","author":"Sierociuk","year":"2013","journal-title":"Philos Trans R Soc A Math Phys Eng Sci"},{"issue":"9","key":"10.1016\/j.cnsns.2019.01.016_bib0006","doi-asserted-by":"crossref","first-page":"2785","DOI":"10.1007\/s00231-017-1985-8","article-title":"Modeling of heat conduction via fractional derivatives","volume":"53","author":"Fabrizio","year":"2017","journal-title":"Heat Mass Transf"},{"key":"10.1016\/j.cnsns.2019.01.016_bib0007","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.enconman.2016.02.003","article-title":"Performance of direct absorption solar collector with nanofluid mixture","volume":"114","author":"Turkyilmazoglu","year":"2016","journal-title":"Energy Convers Manag"},{"key":"10.1016\/j.cnsns.2019.01.016_bib0008","doi-asserted-by":"crossref","first-page":"280","DOI":"10.1016\/j.applthermaleng.2015.12.027","article-title":"Heat transfer from warm water to a moving foot in a footbath","volume":"98","author":"Turkyilmazoglu","year":"2016","journal-title":"Appl Therm Eng"},{"key":"10.1016\/j.cnsns.2019.01.016_bib0009","doi-asserted-by":"crossref","first-page":"346","DOI":"10.1016\/j.ijheatmasstransfer.2017.08.091","article-title":"Heat transfer from moving exponential fins exposed to heat generation","volume":"116","author":"Turkyilmazoglu","year":"2018","journal-title":"Int J Heat Mass Transf"},{"key":"10.1016\/j.cnsns.2019.01.016_bib0010","volume":"198","author":"Podlubny","year":"1998"},{"issue":"1","key":"10.1016\/j.cnsns.2019.01.016_bib0011","first-page":"71","article-title":"Theory and applications of fractional differential equations","volume":"9","author":"Kilbas","year":"2006","journal-title":"Fract Calc Appl Anal"},{"issue":"5","key":"10.1016\/j.cnsns.2019.01.016_bib0012","doi-asserted-by":"crossref","first-page":"889","DOI":"10.1016\/j.cnsns.2006.08.005","article-title":"New travelling wave solutions to the Boussinesq and the Klein-Gordon equations","volume":"13","author":"Wazwaz","year":"2008","journal-title":"Commun Nonlinear Sci Numer Simul"},{"issue":"August (2)","key":"10.1016\/j.cnsns.2019.01.016_bib0013","doi-asserted-by":"crossref","first-page":"1196","DOI":"10.1016\/j.amc.2004.08.005","article-title":"The tanh method: exact solutions of the sine-Gordon and the sinh-Gordon equations","volume":"167","author":"Wazwaz","year":"2005","journal-title":"Appl Math Comput"},{"issue":"March (3)","key":"10.1016\/j.cnsns.2019.01.016_bib0014","doi-asserted-by":"crossref","first-page":"446","DOI":"10.1016\/j.sigpro.2010.04.016","article-title":"On nonlinear fractional Klein\u2013Gordon equation","volume":"91","author":"Golmankhaneh","year":"2011","journal-title":"Signal Process"},{"issue":"July (7)","key":"10.1016\/j.cnsns.2019.01.016_bib0015","doi-asserted-by":"crossref","first-page":"669","DOI":"10.1016\/j.aml.2007.07.023","article-title":"The variational iteration method for studying the Klein\u2013Gordon equation","volume":"21","author":"Yusufo\u011flu","year":"2008","journal-title":"Appl Math Lett"},{"issue":"4","key":"10.1016\/j.cnsns.2019.01.016_bib0016","doi-asserted-by":"crossref","first-page":"347","DOI":"10.1007\/BF00042761","article-title":"Numerical solutions of a damped sine-Gordon equation in two space variables","volume":"29","author":"Djidjeli","year":"1995","journal-title":"J Eng Math"},{"issue":"3","key":"10.1016\/j.cnsns.2019.01.016_bib0017","doi-asserted-by":"crossref","first-page":"700","DOI":"10.1016\/j.matcom.2008.04.018","article-title":"A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions","volume":"79","author":"Dehghan","year":"2008","journal-title":"Math Comput Simul"},{"issue":"3","key":"10.1016\/j.cnsns.2019.01.016_bib0018","doi-asserted-by":"crossref","first-page":"600","DOI":"10.1016\/j.cpc.2011.12.004","article-title":"Numerical simulation of two-dimensional sine-Gordon solitons by differential quadrature method","volume":"183","author":"Jiwari","year":"2012","journal-title":"Comput Phys Commun"},{"issue":"2","key":"10.1016\/j.cnsns.2019.01.016_bib0019","first-page":"1","article-title":"An off-step discretization for the solution of 1D mildly nonlinear wave equations with variable coefficients","volume":"4","author":"Mohanty","year":"2012","journal-title":"J Adv Res Sci Comput"},{"issue":"8","key":"10.1016\/j.cnsns.2019.01.016_bib0020","doi-asserted-by":"crossref","first-page":"4234","DOI":"10.1016\/j.amc.2011.09.054","article-title":"High accuracy cubic spline finite difference approximation for the solution of one-space dimensional non-linear wave equations","volume":"218","author":"Mohanty","year":"2011","journal-title":"Appl Math Comput"},{"key":"10.1016\/j.cnsns.2019.01.016_bib0021","doi-asserted-by":"crossref","first-page":"111","DOI":"10.1016\/j.amc.2016.05.048","article-title":"An algorithm based on exponential modified cubic B-spline differential quadrature method for nonlinear Burgers equation","volume":"290","author":"Tamsir","year":"2016","journal-title":"Appl Math Comput"},{"issue":"2","key":"10.1016\/j.cnsns.2019.01.016_bib0022","doi-asserted-by":"crossref","first-page":"867","DOI":"10.1016\/j.aej.2016.02.009","article-title":"Revisiting the approximate analytical solution of fractional-order gas dynamics equation","volume":"55","author":"Tamsir","year":"2016","journal-title":"Alexandria Eng J"},{"issue":"1","key":"10.1016\/j.cnsns.2019.01.016_bib0023","first-page":"1","article-title":"Approximate analytical solution of time-fractional order Cauchy-reaction diffusion equation","volume":"103","author":"Shukla","year":"2014","journal-title":"CMES"},{"issue":"3","key":"10.1016\/j.cnsns.2019.01.016_bib0024","doi-asserted-by":"crossref","first-page":"32142","DOI":"10.1063\/1.4799548","article-title":"RDTM solution of Caputo time fractional-order hyperbolic telegraph equation","volume":"3","author":"Srivastava","year":"2013","journal-title":"AIP Adv"},{"issue":"1","key":"10.1016\/j.cnsns.2019.01.016_bib0025","doi-asserted-by":"crossref","first-page":"561","DOI":"10.1016\/j.aej.2016.01.025","article-title":"Analytical study of time-fractional order Klein\u2013Gordon equation","volume":"55","author":"Tamsir","year":"2016","journal-title":"Alexandria Eng J"},{"issue":"1","key":"10.1016\/j.cnsns.2019.01.016_bib0026","doi-asserted-by":"crossref","first-page":"78","DOI":"10.1016\/j.cpc.2009.09.001","article-title":"Tension spline approach for the numerical solution of nonlinear Klein-Gordon equation","volume":"181","author":"Rashidinia","year":"2010","journal-title":"Comput Phys Commun"},{"issue":"1","key":"10.1016\/j.cnsns.2019.01.016_bib0027","doi-asserted-by":"crossref","first-page":"129","DOI":"10.1007\/s11075-010-9377-x","article-title":"Tension spline solution of nonlinear sine-Gordon equation","volume":"56","author":"Rashidinia","year":"2011","journal-title":"Numer Algorithms"},{"issue":"1","key":"10.1016\/j.cnsns.2019.01.016_bib0030","doi-asserted-by":"crossref","first-page":"232","DOI":"10.1002\/num.20341","article-title":"High order implicit collocation method for the solution of two-dimensional linear hyperbolic equation","volume":"25","author":"Dehghan","year":"2009","journal-title":"Numer Methods Partial Differ Equ"},{"issue":"2","key":"10.1016\/j.cnsns.2019.01.016_bib0031","doi-asserted-by":"crossref","first-page":"289","DOI":"10.1007\/s11075-016-0149-0","article-title":"Non-polynomial spline method for the solution of two-dimensional linear wave equations with a nonlinear source term","volume":"74","author":"Zadvan","year":"2017","journal-title":"Numer Algorithms"},{"issue":"4","key":"10.1016\/j.cnsns.2019.01.016_bib0032","doi-asserted-by":"crossref","first-page":"1234","DOI":"10.1002\/num.21867","article-title":"High-order difference scheme for the solution of linear time fractional Klein\u2013Gordon equations","volume":"30","author":"Mohebbi","year":"2014","journal-title":"Numer Methods Partial Differ Equ"},{"issue":"1","key":"10.1016\/j.cnsns.2019.01.016_bib0033","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1063\/1.4906256","article-title":"Numerical simulation of two dimensional sine-Gordon solitons using modified cubic B-spline differential quadrature method","volume":"5","author":"Shukla","year":"2015","journal-title":"AIP Adv"},{"key":"10.1016\/j.cnsns.2019.01.016_bib0034","doi-asserted-by":"crossref","first-page":"1189","DOI":"10.1016\/j.physa.2018.08.086","article-title":"An efficient numerical scheme to solve fractional diffusion-wave and fractional Klein\u2013Gordon equations in fluid mechanics","volume":"503","author":"Hashemizadeh","year":"2018","journal-title":"Phys A Stat Mech Appl"},{"key":"10.1016\/j.cnsns.2019.01.016_bib0035","volume":"111","author":"Oldham","year":"1974"},{"key":"10.1016\/j.cnsns.2019.01.016_bib0036","series-title":"An introduction to the fractional calculus and fractional differential equations","author":"Miller","year":"1993"},{"key":"10.1016\/j.cnsns.2019.01.016_bib0037","doi-asserted-by":"crossref","first-page":"42","DOI":"10.1016\/j.amc.2016.09.016","article-title":"Discrete spline methods for solving two point fractional Bagley\u2013Torvik equation","volume":"296","author":"Zahra","year":"2017","journal-title":"Appl Math Comput"},{"issue":"04","key":"10.1016\/j.cnsns.2019.01.016_bib0038","doi-asserted-by":"crossref","DOI":"10.1142\/S0218127412500757","article-title":"How to approximate the fractional derivative of order 1\u202f<\u202f\u03b1\u202f\u2264\u202f2","volume":"22","author":"Sousa","year":"2012","journal-title":"Int J Bifurc Chaos"},{"key":"10.1016\/j.cnsns.2019.01.016_bib0039","doi-asserted-by":"crossref","first-page":"337","DOI":"10.1016\/j.jcp.2015.05.047","article-title":"Some high-order difference schemes for the distributed-order differential equations","volume":"298","author":"Gao","year":"2015","journal-title":"J Comput Phys"},{"issue":"294","key":"10.1016\/j.cnsns.2019.01.016_bib0040","doi-asserted-by":"crossref","first-page":"1703","DOI":"10.1090\/S0025-5718-2015-02917-2","article-title":"A class of second order difference approximations for solving space fractional diffusion equations","volume":"84","author":"Tian","year":"2015","journal-title":"Math Comput"},{"issue":"1","key":"10.1016\/j.cnsns.2019.01.016_bib0041","doi-asserted-by":"crossref","first-page":"65","DOI":"10.1016\/j.cam.2004.01.033","article-title":"Finite difference approximations for fractional advection-dispersion flow equations","volume":"172","author":"Meerschaert","year":"2004","journal-title":"J Comput Appl Math"},{"key":"10.1016\/j.cnsns.2019.01.016_bib0042","unstructured":"Zahra WK, Nasr MA, Van Daele M. Exponentially fitted methods for solving time fractional nonlinear reaction-diffusion equation. Appl Math Comput. Submitted."},{"key":"10.1016\/j.cnsns.2019.01.016_bib0043","series-title":"Exponential Fitting","author":"Ixaru","year":"2004"},{"key":"10.1016\/j.cnsns.2019.01.016_bib0044","doi-asserted-by":"crossref","first-page":"140","DOI":"10.1016\/j.cam.2005.12.022","article-title":"Exponentially-fitted Numerov methods","volume":"200","author":"Vanden Berghe","year":"2007","journal-title":"J Comput Appl Math"},{"issue":"4","key":"10.1016\/j.cnsns.2019.01.016_bib0045","doi-asserted-by":"crossref","first-page":"1441","DOI":"10.1137\/050641752","article-title":"Truncation errors in exponential fitting for oscillatory problems","volume":"44","author":"Coleman","year":"2006","journal-title":"SIAM J Numer Anal"},{"issue":"1","key":"10.1016\/j.cnsns.2019.01.016_bib0046","first-page":"164","article-title":"Approximation formulae generated by exponential fitting","volume":"3","author":"Ixaru","year":"2011","journal-title":"Ann Acad Rom Sci Ser Math Appl"},{"issue":"18","key":"10.1016\/j.cnsns.2019.01.016_bib0047","doi-asserted-by":"crossref","first-page":"5380","DOI":"10.1016\/j.cam.2011.05.049","article-title":"Exponentially fitted methods applied to fourth-order boundary value problems","volume":"235","author":"Hollevoet","year":"2011","journal-title":"J Comput Appl Math"},{"issue":"1","key":"10.1016\/j.cnsns.2019.01.016_bib0048","doi-asserted-by":"crossref","first-page":"260","DOI":"10.1016\/j.cam.2008.11.011","article-title":"The optimal exponentially-fitted Numerov method for solving two-point boundary value problems","volume":"230","author":"Hollevoet","year":"2009","journal-title":"J Comput Appl Math"},{"issue":"4","key":"10.1016\/j.cnsns.2019.01.016_bib0049","doi-asserted-by":"crossref","first-page":"545","DOI":"10.1007\/s10092-015-0161-0","article-title":"An exponential spline technique for solving fractional boundary value problem","volume":"53","author":"Akram","year":"2016","journal-title":"Calcolo"},{"issue":"1","key":"10.1016\/j.cnsns.2019.01.016_bib0050","doi-asserted-by":"crossref","first-page":"129","DOI":"10.1023\/A:1016547232119","article-title":"Time fractional diffusion: a discrete random walk approach","volume":"29","author":"Gorenflo","year":"2002","journal-title":"Nonlinear Dyn"},{"key":"10.1016\/j.cnsns.2019.01.016_bib0051","volume":"568","author":"Ixaru","year":"2004"},{"key":"10.1016\/j.cnsns.2019.01.016_bib0052","series-title":"The fractional calculus: theory and applications of differentiation and integration to arbitrary order","author":"Oldham","year":"2006"},{"key":"10.1016\/j.cnsns.2019.01.016_bib0053","unstructured":"Zahra WK, Nasr MA. Discrete spline solution of time variable order fractional nonlinear parabolic equations, Submitted to Appl Math J."},{"key":"10.1016\/j.cnsns.2019.01.016_bib0054","doi-asserted-by":"crossref","first-page":"46","DOI":"10.1016\/j.jcp.2016.10.006","article-title":"A higher order non-polynomial spline method for fractional sub-diffusion problems","volume":"328","author":"Li","year":"2017","journal-title":"J Comput Phys"},{"issue":"14","key":"10.1016\/j.cnsns.2019.01.016_bib0055","doi-asserted-by":"crossref","first-page":"3554","DOI":"10.1016\/j.apm.2013.11.062","article-title":"Polynomial and nonpolynomial spline methods for fractional sub-diffusion equations","volume":"38","author":"Hosseini","year":"2014","journal-title":"Appl Math Model"},{"issue":"8","key":"10.1016\/j.cnsns.2019.01.016_bib0056","doi-asserted-by":"crossref","first-page":"1591","DOI":"10.1080\/00207160.2014.950254","article-title":"Non-polynomial splines method for numerical solutions of the regularized long wave equation","volume":"92","author":"Lin","year":"2015","journal-title":"Int J Comput Math"},{"issue":"July (21)","key":"10.1016\/j.cnsns.2019.01.016_bib0057","doi-asserted-by":"crossref","first-page":"8447","DOI":"10.1016\/j.amc.2011.03.043","article-title":"A smooth approximation based on exponential spline solutions for nonlinear fourth order two point boundary value problems","volume":"217","author":"Zahra","year":"2011","journal-title":"Appl Math Comput"},{"issue":"1","key":"10.1016\/j.cnsns.2019.01.016_bib0058","doi-asserted-by":"crossref","first-page":"17","DOI":"10.7153\/fdc-02-02","article-title":"On the stability analysis of weighted average finite difference methods for fractional wave equation","volume":"2","author":"Sweilam","year":"2012","journal-title":"Fract Differ Calc"},{"issue":"4","key":"10.1016\/j.cnsns.2019.01.016_bib0059","doi-asserted-by":"crossref","first-page":"1740","DOI":"10.1137\/090771715","article-title":"Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation","volume":"32","author":"Chen","year":"2010","journal-title":"SIAM J Sci Comput"}],"container-title":["Communications in Nonlinear Science and Numerical Simulation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S100757041930019X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S100757041930019X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,9,11]],"date-time":"2022-09-11T04:50:33Z","timestamp":1662871833000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S100757041930019X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,7]]},"references-count":57,"alternative-id":["S100757041930019X"],"URL":"https:\/\/doi.org\/10.1016\/j.cnsns.2019.01.016","relation":{},"ISSN":["1007-5704"],"issn-type":[{"value":"1007-5704","type":"print"}],"subject":[],"published":{"date-parts":[[2019,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Exponentially fitted methods for solving two-dimensional time fractional damped Klein\u2013Gordon equation with nonlinear source term","name":"articletitle","label":"Article Title"},{"value":"Communications in Nonlinear Science and Numerical Simulation","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cnsns.2019.01.016","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}