{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,26]],"date-time":"2024-07-26T05:19:06Z","timestamp":1721971146741},"reference-count":23,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2016,7,1]],"date-time":"2016-07-01T00:00:00Z","timestamp":1467331200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Communications in Nonlinear Science and Numerical Simulation"],"published-print":{"date-parts":[[2016,7]]},"DOI":"10.1016\/j.cnsns.2015.11.023","type":"journal-article","created":{"date-parts":[[2015,12,3]],"date-time":"2015-12-03T08:15:20Z","timestamp":1449130520000},"page":"98-108","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":32,"special_numbering":"C","title":["Lie symmetry properties of nonlinear reaction-diffusion equations with gradient-dependent diffusivity"],"prefix":"10.1016","volume":"36","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-1733-5240","authenticated-orcid":false,"given":"Roman","family":"Cherniha","sequence":"first","affiliation":[]},{"given":"John R.","family":"King","sequence":"additional","affiliation":[]},{"given":"Sergii","family":"Kovalenko","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.cnsns.2015.11.023_bib0001","first-page":"384","article-title":"Group classification of the equations of nonlinear filtration","volume":"35","author":"Akhatov","year":"1987","journal-title":"Sov Math Dokl"},{"key":"10.1016\/j.cnsns.2015.11.023_bib0002","doi-asserted-by":"publisher","first-page":"1401","DOI":"10.1007\/BF01097533","article-title":"Nonlocal symmetries. Heuristic approach","volume":"55","author":"Akhatov","year":"1991","journal-title":"J Sov Math"},{"key":"10.1016\/j.cnsns.2015.11.023_bib0003","doi-asserted-by":"publisher","first-page":"259","DOI":"10.1006\/jmaa.1996.0316","article-title":"Nonclassical solutions are non-existent for the heat equation and rare for nonlinear diffusion","volume":"202","author":"Arrigo","year":"1996","journal-title":"J Math Anal Appl"},{"key":"10.1016\/j.cnsns.2015.11.023_sbref0004","first-page":"679","article-title":"On self-similar motions of compressible fluid in a porous medium","volume":"16","author":"Barenblatt","year":"1952","journal-title":"Prikladnaya Matematika i Mekhanika (Appl Math Mech (PMM))"},{"key":"10.1016\/j.cnsns.2015.11.023_bib0005","series-title":"Symmetries and differential equations","author":"Bluman","year":"1989"},{"key":"10.1016\/j.cnsns.2015.11.023_bib0006","doi-asserted-by":"publisher","first-page":"405","DOI":"10.1088\/0305-4470\/36\/2\/309","article-title":"Lie symmetries of nonlinear multidimensional reaction-diffusion systems: II","volume":"36","author":"Cherniha","year":"2003","journal-title":"J Phys A"},{"key":"10.1016\/j.cnsns.2015.11.023_bib0007","doi-asserted-by":"publisher","first-page":"11","DOI":"10.1016\/j.jmaa.2004.10.034","article-title":"Nonlinear reaction-diffusion systems with variable diffusivities: lie symmetries, ans\u00e4tze and exact solutions","volume":"308","author":"Cherniha","year":"2005","journal-title":"J Math Anal Appl"},{"key":"10.1016\/j.cnsns.2015.11.023_bib0008","doi-asserted-by":"publisher","first-page":"1363","DOI":"10.1016\/j.jmaa.2008.01.011","article-title":"Lie symmetries and form\u2013preserving transformations of reaction\u2013diffusion\u2013convection equations","volume":"342","author":"Cherniha","year":"2008","journal-title":"J Math Anal Appl"},{"key":"10.1016\/j.cnsns.2015.11.023_bib0009","doi-asserted-by":"publisher","first-page":"115","DOI":"10.1016\/0041-5553(82)90102-1","article-title":"On invariant solutions of non-linear heat conduction with a source","volume":"22","author":"Dorodnitsyn","year":"1982","journal-title":"USSR Comput Math Math Phys"},{"key":"10.1016\/j.cnsns.2015.11.023_sbref0010","first-page":"1215","article-title":"Group properties of the nonlinear heat equation with source in the two- and three-dimensional cases","volume":"19","author":"Dorodnitsyn","year":"1983","journal-title":"Differential\u2019niye Uravneniya (Differ Equ)"},{"key":"10.1016\/j.cnsns.2015.11.023_bib0011","doi-asserted-by":"publisher","first-page":"1303","DOI":"10.1016\/0362-546X(86)90068-4","article-title":"On the equation of turbulent filtration in one- dimensional porous media","volume":"10","author":"Esteban","year":"1986","journal-title":"Nonlin Anal Theory Methods Appl"},{"key":"10.1016\/j.cnsns.2015.11.023_bib0012","doi-asserted-by":"publisher","first-page":"1133","DOI":"10.1016\/j.cnsns.2005.12.010","article-title":"Differential invariants of the one-dimensional quasi-linear second-order evolution equations","volume":"12","author":"Ibragimov","year":"2007","journal-title":"Comm Nonlin Sci Num Sim"},{"key":"10.1016\/j.cnsns.2015.11.023_bib0013","doi-asserted-by":"crossref","first-page":"449","DOI":"10.1007\/BF00400548","article-title":"Self-similar solutions of some nonlinear equations","volume":"22","author":"Nariboli","year":"1970","journal-title":"Appl Sci Res"},{"key":"10.1016\/j.cnsns.2015.11.023_bib0014","doi-asserted-by":"publisher","first-page":"958","DOI":"10.1109\/TIP.2011.2169272","article-title":"Adaptive Perona-Malik Model Based on the Variable Exponent for Image Denoising","volume":"21","author":"Guo","year":"2012","journal-title":"IEEE Trans on Image Proc"},{"key":"10.1016\/j.cnsns.2015.11.023_bib0015","doi-asserted-by":"publisher","first-page":"169","DOI":"10.1070\/RM1987v042n02ABEH001309","article-title":"Some problems of the qualitative theory of second-order nonlinear degenerate parabolic equations","volume":"42","author":"Kalashnikov","year":"1987","journal-title":"Russ Math Surv"},{"key":"10.1016\/j.cnsns.2015.11.023_bib0016","first-page":"L769","article-title":"On point transformations of evolution equations","volume":"24","author":"Kingston","year":"1991","journal-title":"JPhysA"},{"key":"10.1016\/j.cnsns.2015.11.023_bib0017","first-page":"1597","article-title":"On form-preserving point transformations of partial differential equations","volume":"31","author":"Kingston","year":"1998","journal-title":"JPhysA"},{"key":"10.1016\/j.cnsns.2015.11.023_bib0018","series-title":"Applications of Lie groups to differential equations","author":"Olver","year":"1993"},{"key":"10.1016\/j.cnsns.2015.11.023_bib0019","first-page":"492","article-title":"Group relations of the equation of non-linear heat conductivity","volume":"125","author":"Ovsiannikov","year":"1959","journal-title":"Dokl Akad Nauk SSSR"},{"key":"10.1016\/j.cnsns.2015.11.023_bib0020","series-title":"Group analysis of differential equations","author":"Ovsiannikov","year":"1982"},{"key":"10.1016\/j.cnsns.2015.11.023_bib0021","doi-asserted-by":"publisher","first-page":"25","DOI":"10.1016\/0898-1221(92)90090-5","article-title":"Similarity solutions for axisymmetric plane radial power law fluid flows through a porous medium","volume":"23","author":"Pascal","year":"1992","journal-title":"Comput Math Appl"},{"key":"10.1016\/j.cnsns.2015.11.023_bib0022","doi-asserted-by":"publisher","first-page":"629","DOI":"10.1109\/34.56205","article-title":"Scale-space and edge detection using anisotropic diffusion","volume":"12","author":"Perona","year":"1990","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"10.1016\/j.cnsns.2015.11.023_bib0023","doi-asserted-by":"publisher","first-page":"171","DOI":"10.1007\/s00526-005-0363-4","article-title":"Existence of infinitely many solutions for the one-dimensional Perona\u2013Malik model","volume":"26","author":"Zhang","year":"2006","journal-title":"Calc Var Partial Differ Equ"}],"container-title":["Communications in Nonlinear Science and Numerical Simulation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1007570415004025?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1007570415004025?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,9,2]],"date-time":"2019-09-02T04:54:52Z","timestamp":1567400092000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1007570415004025"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2016,7]]},"references-count":23,"alternative-id":["S1007570415004025"],"URL":"https:\/\/doi.org\/10.1016\/j.cnsns.2015.11.023","relation":{},"ISSN":["1007-5704"],"issn-type":[{"value":"1007-5704","type":"print"}],"subject":[],"published":{"date-parts":[[2016,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Lie symmetry properties of nonlinear reaction-diffusion equations with gradient-dependent diffusivity","name":"articletitle","label":"Article Title"},{"value":"Communications in Nonlinear Science and Numerical Simulation","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cnsns.2015.11.023","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"Copyright \u00a9 2015 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}