{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,2]],"date-time":"2024-09-02T09:50:16Z","timestamp":1725270616653},"reference-count":76,"publisher":"Elsevier BV","issue":"1-3","license":[{"start":{"date-parts":[[2015,5,1]],"date-time":"2015-05-01T00:00:00Z","timestamp":1430438400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Communications in Nonlinear Science and Numerical Simulation"],"published-print":{"date-parts":[[2015,5]]},"DOI":"10.1016\/j.cnsns.2014.07.015","type":"journal-article","created":{"date-parts":[[2014,7,23]],"date-time":"2014-07-23T20:04:27Z","timestamp":1406145867000},"page":"1178-1200","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":48,"title":["Local weak form meshless techniques based on the radial point interpolation (RPI) method and local boundary integral equation (LBIE) method to evaluate European and American options"],"prefix":"10.1016","volume":"22","author":[{"given":"Jamal Amani","family":"Rad","sequence":"first","affiliation":[]},{"given":"Kourosh","family":"Parand","sequence":"additional","affiliation":[]},{"given":"Saeid","family":"Abbasbandy","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.cnsns.2014.07.015_b0005","doi-asserted-by":"crossref","first-page":"637","DOI":"10.1086\/260062","article-title":"The pricing of options and corporate liabilities","volume":"81","author":"Black","year":"1973","journal-title":"J Polit Econ"},{"key":"10.1016\/j.cnsns.2014.07.015_b0010","doi-asserted-by":"crossref","first-page":"461","DOI":"10.2307\/2330152","article-title":"Finite difference methods and jump processes arising in the pricing of contingent claim: a synthesis","volume":"13","author":"Brennan","year":"1978","journal-title":"J Finance Quantum Anal"},{"key":"10.1016\/j.cnsns.2014.07.015_b0015","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1016\/S0096-3003(97)10122-9","article-title":"An upwind numerical approach for an American and European option pricing model","volume":"97","author":"Vazquez","year":"1998","journal-title":"Appl Math Comput"},{"key":"10.1016\/j.cnsns.2014.07.015_b0020","doi-asserted-by":"crossref","first-page":"1241","DOI":"10.1016\/j.camwa.2005.07.004","article-title":"A highly accurate linearized method for free boundary problems","volume":"50","author":"Wu","year":"2005","journal-title":"Comput Math Appl"},{"key":"10.1016\/j.cnsns.2014.07.015_b0025","doi-asserted-by":"crossref","first-page":"165","DOI":"10.1016\/S0096-3003(03)00621-0","article-title":"Extrapolation of difference methods in option valuation","volume":"153","author":"Arciniega","year":"2004","journal-title":"Appl Math Comput"},{"key":"10.1016\/j.cnsns.2014.07.015_b0030","doi-asserted-by":"crossref","first-page":"1239","DOI":"10.1080\/00207160.2012.688115","article-title":"The numerical approximation of nonlinear Black\u2013Scholes model for exotic path-dependent American options with transaction cost","volume":"89","author":"Yousuf","year":"2012","journal-title":"Int J Comput Math"},{"key":"10.1016\/j.cnsns.2014.07.015_b0035","unstructured":"Zvan R, Forsyth PA, Vetzal KR. A general finite element approach for PDE option pricing models [Ph.D. thesis]. University of Waterloo, Waterloo; 1998."},{"key":"10.1016\/j.cnsns.2014.07.015_b0040","doi-asserted-by":"crossref","first-page":"1571","DOI":"10.1016\/j.camwa.2010.06.040","article-title":"The evaluation of American options in a stochastic volatility model with jumps: an efficient finite element approach","volume":"60","author":"Ballestra","year":"2010","journal-title":"Comput Math Appl"},{"key":"10.1016\/j.cnsns.2014.07.015_b0045","doi-asserted-by":"crossref","first-page":"203","DOI":"10.12732\/ijam.v26i2.7","article-title":"A numerical method to compute the volatility of the fractional Brownian motion implied by American options","volume":"26","author":"Ballestra","year":"2013","journal-title":"Int J Appl Math"},{"key":"10.1016\/j.cnsns.2014.07.015_b0050","doi-asserted-by":"crossref","first-page":"2095","DOI":"10.1137\/S1064827500382324","article-title":"Quadratic convergence for valuing American options using a penalty method","volume":"23","author":"Forsyth","year":"2002","journal-title":"SIAM J Sci Comput"},{"key":"10.1016\/j.cnsns.2014.07.015_b0055","doi-asserted-by":"crossref","first-page":"703","DOI":"10.1093\/imanum\/21.3.703","article-title":"A finite volume approach for contingent claims valuation","volume":"21","author":"Zvan","year":"2001","journal-title":"IMA J Numer Anal"},{"key":"10.1016\/j.cnsns.2014.07.015_b0060","doi-asserted-by":"crossref","first-page":"94","DOI":"10.1016\/j.cam.2007.10.045","article-title":"An irregular grid approach for pricing high-dimensional American options","volume":"222","author":"Berridge","year":"2008","journal-title":"J Comput Appl Math"},{"key":"10.1016\/j.cnsns.2014.07.015_b0065","doi-asserted-by":"crossref","first-page":"210","DOI":"10.1016\/j.cam.2007.10.035","article-title":"Adaptive \u03b8-methods for pricing American options","volume":"222","author":"Khaliq","year":"2008","journal-title":"J Comput Appl Math"},{"key":"10.1016\/j.cnsns.2014.07.015_b0070","doi-asserted-by":"crossref","first-page":"17","DOI":"10.1016\/j.cam.2007.10.044","article-title":"A fast high-order finite difference algorithm for pricing American options","volume":"222","author":"Khaliq","year":"2008","journal-title":"J Comput Appl Math"},{"key":"10.1016\/j.cnsns.2014.07.015_b0075","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1016\/j.cam.2007.10.041","article-title":"Penalty methods for the numerical solution of American multi-asset option problems","volume":"222","author":"Nielsen","year":"2008","journal-title":"J Comput Appl Math"},{"key":"10.1016\/j.cnsns.2014.07.015_b0080","doi-asserted-by":"crossref","first-page":"306","DOI":"10.1016\/j.cam.2006.07.006","article-title":"Compact finite difference method for American option pricing","volume":"206","author":"Zhao","year":"2007","journal-title":"J Comput Appl Math"},{"key":"10.1016\/j.cnsns.2014.07.015_b0085","doi-asserted-by":"crossref","first-page":"270","DOI":"10.1016\/j.cam.2007.01.035","article-title":"Numerical pricing of options using high-order compact finite difference schemes","volume":"218","author":"Tangman","year":"2008","journal-title":"J Comput Appl Math"},{"key":"10.1016\/j.cnsns.2014.07.015_b0090","doi-asserted-by":"crossref","first-page":"583","DOI":"10.1016\/j.cam.2008.12.018","article-title":"Optimal convergence rate of the explicit finite difference scheme for American option valuation","volume":"230","author":"Hu","year":"2009","journal-title":"J Comput Appl Math"},{"key":"10.1016\/j.cnsns.2014.07.015_b0095","doi-asserted-by":"crossref","first-page":"1832","DOI":"10.1016\/j.cnsns.2012.11.010","article-title":"A fast numerical approach to option pricing with stochastic interest rate, stochastic volatility and double jumps","volume":"18","author":"Zhang","year":"2013","journal-title":"Commun Nonlinear Sci Numer Simul"},{"key":"10.1016\/j.cnsns.2014.07.015_b0100","doi-asserted-by":"crossref","first-page":"229","DOI":"10.1016\/0304-405X(79)90015-1","article-title":"Option pricing: a simplified approach","volume":"7","author":"Cox","year":"1979","journal-title":"J Finance Econ"},{"key":"10.1016\/j.cnsns.2014.07.015_b0105","doi-asserted-by":"crossref","first-page":"1211","DOI":"10.1093\/rfs\/9.4.1211","article-title":"American option valuation: new bounds, approximations, and a comparison of existing methods","volume":"9","author":"Broadie","year":"1996","journal-title":"Rev Finance Stud"},{"key":"10.1016\/j.cnsns.2014.07.015_b0110","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s102030300000","article-title":"An efficient binomial method for pricing American put options","volume":"4","author":"Gaudenzi","year":"2003","journal-title":"Decis Econ Finance"},{"key":"10.1016\/j.cnsns.2014.07.015_b0115","doi-asserted-by":"crossref","first-page":"791","DOI":"10.1002\/fut.20272","article-title":"Richardson extrapolation techniques for the pricing of American-style options","volume":"27","author":"Chung","year":"2007","journal-title":"J Futures Markets"},{"key":"10.1016\/j.cnsns.2014.07.015_b0120","doi-asserted-by":"crossref","first-page":"563","DOI":"10.1080\/02533839.2004.9670904","article-title":"Using meshfree approximation for multi-asset American option problems","volume":"27","author":"Khaliq","year":"2004","journal-title":"J Chin Inst Eng"},{"key":"10.1016\/j.cnsns.2014.07.015_b0125","doi-asserted-by":"crossref","first-page":"1142","DOI":"10.1016\/j.jedc.2013.01.013","article-title":"Pricing European and American options with two stochastic factors: a highly efficient radial basis function approach","volume":"37","author":"Ballestra","year":"2013","journal-title":"J Econ Dyn Control"},{"key":"10.1016\/j.cnsns.2014.07.015_b0130","first-page":"31","article-title":"A radial basis function method for solving options pricing models","volume":"8","author":"Hon","year":"1999","journal-title":"Finance Eng"},{"key":"10.1016\/j.cnsns.2014.07.015_b0135","doi-asserted-by":"crossref","first-page":"1354","DOI":"10.1016\/j.mcm.2011.10.014","article-title":"Radial basis functions with application to finance: American put option under jump diffusion","volume":"55","author":"Golbabai","year":"2012","journal-title":"Math Comput Modell"},{"key":"10.1016\/j.cnsns.2014.07.015_b0140","doi-asserted-by":"crossref","first-page":"73","DOI":"10.1016\/S0955-7997(02)00083-8","article-title":"Convergence error estimate in solving free boundary diffusion problem by radial basis functions method","volume":"27","author":"Wu","year":"2003","journal-title":"Eng Anal Bound Elem"},{"key":"10.1016\/j.cnsns.2014.07.015_b0145","doi-asserted-by":"crossref","first-page":"197","DOI":"10.1016\/S0096-3003(00)00087-4","article-title":"On the use of boundary conditions for variational formulations arising in financial mathematics","volume":"124","author":"Marcozzi","year":"2003","journal-title":"Appl Math Comput"},{"key":"10.1016\/j.cnsns.2014.07.015_b0150","doi-asserted-by":"crossref","first-page":"513","DOI":"10.1016\/S0898-1221(01)00302-9","article-title":"A quasi-radial basis functions method for American options pricing","volume":"43","author":"Hon","year":"2002","journal-title":"Comput Math Appl"},{"key":"10.1016\/j.cnsns.2014.07.015_b0155","doi-asserted-by":"crossref","first-page":"1990","DOI":"10.1016\/j.cpc.2010.08.035","article-title":"A not-a-knot meshless method using radial basis functions and predictor\u2013corrector scheme to the numerical solution of improved Boussinesq equation","volume":"181","author":"Shokri","year":"2010","journal-title":"Comput Phys Commun"},{"key":"10.1016\/j.cnsns.2014.07.015_b0160","doi-asserted-by":"crossref","first-page":"283","DOI":"10.1007\/s00466-010-0547-4","article-title":"A boundary-only meshless method for numerical solution of the Eikonal equation","volume":"47","author":"Dehghan","year":"2011","journal-title":"Comput Mech"},{"key":"10.1016\/j.cnsns.2014.07.015_b0165","doi-asserted-by":"crossref","first-page":"400","DOI":"10.1016\/j.cam.2008.12.011","article-title":"Numerical solution of the nonlinear Klein\u2013Gordon equation using radial basis functions","volume":"230","author":"Dehghan","year":"2009","journal-title":"J Comput Appl Math"},{"issue":"2013","key":"10.1016\/j.cnsns.2014.07.015_b0170","first-page":"582","article-title":"Kansa method for the solution of a parabolic equation with an unknown spacewise-dependent coefficient subject to an extra measurement","volume":"184","author":"Parand","year":"2012","journal-title":"Comput Phys Commun"},{"key":"10.1016\/j.cnsns.2014.07.015_b0175","doi-asserted-by":"crossref","first-page":"181","DOI":"10.1016\/j.enganabound.2011.06.012","article-title":"Radial basis functions methods for solving Fokker\u2013Planck equation","volume":"36","author":"Kazem","year":"2012","journal-title":"Eng Anal Bound Elem"},{"key":"10.1016\/j.cnsns.2014.07.015_b0180","doi-asserted-by":"crossref","first-page":"399","DOI":"10.1016\/j.camwa.2011.10.052","article-title":"A meshless method on non-Fickian flows with mixing length growth in porous media based on radial basis functions","volume":"64","author":"Kazem","year":"2012","journal-title":"Comput Math Appl"},{"key":"10.1016\/j.cnsns.2014.07.015_b0185","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.enganabound.2013.10.013","article-title":"Application of meshfree methods for solving the inverse one-dimensional Stefan problem","volume":"40","author":"Rashedi","year":"2014","journal-title":"Eng Anal Bound Elem"},{"key":"10.1016\/j.cnsns.2014.07.015_b0190","doi-asserted-by":"crossref","first-page":"1164","DOI":"10.1080\/00207160.2012.690034","article-title":"A new radial basis functions method for pricing American options under Merton\u2019s jump-diffusion model","volume":"89","author":"Saib","year":"2012","journal-title":"Int J Comput Math"},{"key":"10.1016\/j.cnsns.2014.07.015_b0195","doi-asserted-by":"crossref","first-page":"1546","DOI":"10.1016\/j.enganabound.2012.04.011","article-title":"A radial basis function approach to compute the first-passage probability density function in two-dimensional jump-diffusion models for financial and other applications","volume":"36","author":"Ballestra","year":"2012","journal-title":"Eng Anal Bound Elem"},{"key":"10.1016\/j.cnsns.2014.07.015_b0200","doi-asserted-by":"crossref","first-page":"1075","DOI":"10.1016\/j.enganabound.2011.02.008","article-title":"Computing the survival probability density function in jump-diffusion models: a new approach based on radial basis functions","volume":"35","author":"Ballestra","year":"2011","journal-title":"Eng Anal Bound Elem"},{"key":"10.1016\/j.cnsns.2014.07.015_b0205","doi-asserted-by":"crossref","first-page":"772","DOI":"10.1016\/j.cpc.2009.12.010","article-title":"Numerical simulation of two-dimensional sine-gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM)","volume":"181","author":"Dehghan","year":"2010","journal-title":"Comput Phys Commun"},{"key":"10.1016\/j.cnsns.2014.07.015_b0210","doi-asserted-by":"crossref","first-page":"511","DOI":"10.1016\/j.enganabound.2011.11.007","article-title":"New implementation of MLBIE method for heat conduction analysis in functionally graded materials","volume":"36","author":"Mirzaei","year":"2012","journal-title":"Eng Anal Bound Elem"},{"key":"10.1016\/j.cnsns.2014.07.015_b0215","doi-asserted-by":"crossref","first-page":"120","DOI":"10.1016\/j.cam.2013.02.005","article-title":"A generalized moving least square reproducing kernel method","volume":"249","author":"Salehi","year":"2013","journal-title":"J Comput Appl Math"},{"key":"10.1016\/j.cnsns.2014.07.015_b0220","doi-asserted-by":"crossref","first-page":"34","DOI":"10.1016\/j.apnum.2013.03.001","article-title":"A moving least square reproducing polynomial meshless method","volume":"69","author":"Salehi","year":"2013","journal-title":"Appl Numer Math"},{"key":"10.1016\/j.cnsns.2014.07.015_b0225","doi-asserted-by":"crossref","first-page":"1662","DOI":"10.1002\/nme.2635","article-title":"Implementation of meshless LBIE method to the 2D non-linear SG problem","volume":"79","author":"Dehghan","year":"2009","journal-title":"Int J Numer Methods Eng"},{"key":"10.1016\/j.cnsns.2014.07.015_b0230","doi-asserted-by":"crossref","first-page":"223","DOI":"10.1007\/s004660050297","article-title":"A local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretization approach","volume":"21","author":"Zhu","year":"1998","journal-title":"Comput Mech"},{"key":"10.1016\/j.cnsns.2014.07.015_b0235","doi-asserted-by":"crossref","first-page":"1623","DOI":"10.1002\/nme.489","article-title":"A point interpolation meshless method based on radial basis functions","volume":"54","author":"Wang","year":"2002","journal-title":"Int J Numer Methods Eng"},{"key":"10.1016\/j.cnsns.2014.07.015_b0240","series-title":"An introduction to meshfree methods and their programing","author":"Liu","year":"2005"},{"key":"10.1016\/j.cnsns.2014.07.015_b0245","doi-asserted-by":"crossref","first-page":"348","DOI":"10.1007\/s004660050457","article-title":"A critical assessment of the truly meshless local Petrov\u2013Galerkin (MLPG), and local boundary integral equation (LBIE) methods","volume":"24","author":"Atluri","year":"1999","journal-title":"Comput Mech"},{"key":"10.1016\/j.cnsns.2014.07.015_b0250","doi-asserted-by":"crossref","first-page":"174","DOI":"10.1007\/s004660050351","article-title":"A meshless local boundary integral equation (LBIE) for solving nonlinear problems","volume":"22","author":"Zhu","year":"1998","journal-title":"Comput Mech"},{"key":"10.1016\/j.cnsns.2014.07.015_b0255","doi-asserted-by":"crossref","first-page":"375","DOI":"10.1016\/S0955-7997(98)00096-4","article-title":"A meshless numerical method based on the local boundary integral equation (LBIE) to solve linear and non-linear boundary value problems","volume":"23","author":"Zhu","year":"1999","journal-title":"Eng Anal Bound Elem"},{"key":"10.1016\/j.cnsns.2014.07.015_b0260","doi-asserted-by":"crossref","first-page":"494","DOI":"10.1016\/j.commatsci.2003.08.006","article-title":"Transient heat conduction analysis in functionally graded materials by the meshless local boundary integral equation method","volume":"28","author":"Sladek","year":"2003","journal-title":"Comput Mater Sci"},{"key":"10.1016\/j.cnsns.2014.07.015_b0265","doi-asserted-by":"crossref","first-page":"169","DOI":"10.1007\/s00466-003-0470-z","article-title":"Local BIEM for transient heat conduction analysis in 3-D axisymmetric functionally graded solids","volume":"32","author":"Sladek","year":"2003","journal-title":"Comput Mech"},{"key":"10.1016\/j.cnsns.2014.07.015_b0270","doi-asserted-by":"crossref","first-page":"1458","DOI":"10.1016\/j.cpc.2009.03.007","article-title":"Meshless local boundary integral equation (LBIE) method for the unsteady magnetohydrodynamic (MHD) flow in rectangular and circular pipes","volume":"180","author":"Dehghan","year":"2009","journal-title":"Comput Phys Commun"},{"key":"10.1016\/j.cnsns.2014.07.015_b0275","doi-asserted-by":"crossref","first-page":"8","DOI":"10.1016\/j.enganabound.2012.08.007","article-title":"A local integral equation formulation to solve coupled nonlinear reaction\u2013diffusion equations by using moving least square approximation","volume":"37","author":"Shirzadi","year":"2013","journal-title":"Eng Anal Bound Elem"},{"key":"10.1016\/j.cnsns.2014.07.015_b0280","doi-asserted-by":"crossref","first-page":"603","DOI":"10.1016\/j.enganabound.2013.01.010","article-title":"Application of meshless local integral equations to two dimensional analysis of coupled non-fick diffusion-elasticity","volume":"37","author":"Hosseini","year":"2013","journal-title":"Eng Anal Bound Elem"},{"key":"10.1016\/j.cnsns.2014.07.015_b0285","doi-asserted-by":"crossref","first-page":"904","DOI":"10.1016\/j.enganabound.2010.03.015","article-title":"Local integral equations implemented by MLS-approximation and analytical integrations","volume":"34","author":"Sladek","year":"2010","journal-title":"Eng Anal Bound Elem"},{"key":"10.1016\/j.cnsns.2014.07.015_b0290","doi-asserted-by":"crossref","first-page":"1237","DOI":"10.1016\/j.apnum.2011.08.003","article-title":"Meshless Galerkin algorithms for boundary integral equations with moving least square approximations","volume":"61","author":"Li","year":"2011","journal-title":"Appl Numer Math"},{"key":"10.1016\/j.cnsns.2014.07.015_b0295","doi-asserted-by":"crossref","first-page":"283","DOI":"10.1007\/BF03177517","article-title":"Compactly supported positive definite radial functions","volume":"4","author":"Wu","year":"1995","journal-title":"Adv Comput Math"},{"key":"10.1016\/j.cnsns.2014.07.015_b0300","doi-asserted-by":"crossref","first-page":"177","DOI":"10.1080\/135048699334528","article-title":"Multigrid for American option pricing with stochastic volatility","volume":"6","author":"Clarke","year":"1999","journal-title":"Appl Math Finance"},{"key":"10.1016\/j.cnsns.2014.07.015_b0305","series-title":"Options, futures, other derivatives","author":"Hull","year":"2002"},{"key":"10.1016\/j.cnsns.2014.07.015_b0310","doi-asserted-by":"crossref","first-page":"383","DOI":"10.1007\/s11156-011-0253-0","article-title":"Using Richardson extrapolation techniques to price American options with alternative stochastic processes","volume":"39","author":"Chang","year":"2012","journal-title":"Rev Quant Finance Account"},{"key":"10.1016\/j.cnsns.2014.07.015_b0315","series-title":"Option pricing: mathematical models and computation","author":"Wilmott","year":"1996"},{"key":"10.1016\/j.cnsns.2014.07.015_b0320","doi-asserted-by":"crossref","first-page":"1043","DOI":"10.1016\/j.apnum.2008.05.001","article-title":"Meshless local Petrov\u2013Galerkin (MLPG) method for the unsteady magnetohydrodynamic (MHD) flow through pipe with arbitrary wall conductivity","volume":"59","author":"Dehghan","year":"2009","journal-title":"Appl Numer Math"},{"key":"10.1016\/j.cnsns.2014.07.015_b0325","doi-asserted-by":"crossref","first-page":"747","DOI":"10.1016\/j.enganabound.2007.11.005","article-title":"The meshless local Petrov\u2013Galerkin MLPG method for the generalized two-dimensional non-linear Schrodinger equation","volume":"32","author":"Dehghan","year":"2008","journal-title":"Eng Anal Bound Elem"},{"key":"10.1016\/j.cnsns.2014.07.015_b0330","series-title":"Radial basis functions: theory and implementations","author":"Buhmann","year":"2004"},{"key":"10.1016\/j.cnsns.2014.07.015_b0335","doi-asserted-by":"crossref","first-page":"571","DOI":"10.1002\/num.10062","article-title":"Exponential convergence and H-c multiquadric collocation method for partial differential equations","volume":"19","author":"Cheng","year":"2003","journal-title":"Numer Methods Part DE"},{"key":"10.1016\/j.cnsns.2014.07.015_b0340","doi-asserted-by":"crossref","first-page":"29","DOI":"10.1016\/0898-1221(91)90123-L","article-title":"The parameter r2 in multiquadric interpolation","volume":"21","author":"Carlson","year":"1991","journal-title":"Comput Math Appl"},{"key":"10.1016\/j.cnsns.2014.07.015_b0345","doi-asserted-by":"crossref","first-page":"346","DOI":"10.1007\/s11075-007-9072-8","article-title":"On choosing optimal shape parameters for RBF approximation","volume":"45","author":"Fasshauer","year":"2007","journal-title":"Numer Algorithms"},{"key":"10.1016\/j.cnsns.2014.07.015_b0350","doi-asserted-by":"crossref","first-page":"631","DOI":"10.1137\/0913035","article-title":"BCGSTAB: a fast and smoothly converging variant of BCG for the solution of nonsymmetric linear systems","volume":"18","author":"der Vorst","year":"1992","journal-title":"SIAM J Sci Stat Comput"},{"key":"10.1016\/j.cnsns.2014.07.015_b0355","series-title":"Numerical linear algebra and applications","author":"Datta","year":"2010"},{"key":"10.1016\/j.cnsns.2014.07.015_b0360","series-title":"The mathematics of financial derivatives","author":"Wilmott","year":"1995"},{"key":"10.1016\/j.cnsns.2014.07.015_b0365","series-title":"Scattered data approximation","author":"Wendland","year":"2005"},{"key":"10.1016\/j.cnsns.2014.07.015_b0370","doi-asserted-by":"crossref","first-page":"983","DOI":"10.1093\/imanum\/drr030","article-title":"On generalized moving least squares and diffuse derivatives","volume":"32","author":"Mirzaei","year":"2012","journal-title":"IMA J Numer Anal"},{"key":"10.1016\/j.cnsns.2014.07.015_b0375","doi-asserted-by":"crossref","first-page":"193","DOI":"10.1023\/A:1018975909870","article-title":"An algorithm for selecting a good parameter c in radial basis function interpolation","volume":"11","author":"Rippa","year":"1999","journal-title":"Adv Comput Math"},{"key":"10.1016\/j.cnsns.2014.07.015_b0380","unstructured":"Tarwater AE. A parameter study of Hardy\u2019s multiquadric method for scattered data interpolation. Report UCRL-53670, Lawrence Livermore National Laboratory; 1985."}],"container-title":["Communications in Nonlinear Science and Numerical Simulation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1007570414003293?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1007570414003293?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2018,10,1]],"date-time":"2018-10-01T11:50:06Z","timestamp":1538394606000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1007570414003293"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2015,5]]},"references-count":76,"journal-issue":{"issue":"1-3","published-print":{"date-parts":[[2015,5]]}},"alternative-id":["S1007570414003293"],"URL":"https:\/\/doi.org\/10.1016\/j.cnsns.2014.07.015","relation":{},"ISSN":["1007-5704"],"issn-type":[{"value":"1007-5704","type":"print"}],"subject":[],"published":{"date-parts":[[2015,5]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Local weak form meshless techniques based on the radial point interpolation (RPI) method and local boundary integral equation (LBIE) method to evaluate European and American options","name":"articletitle","label":"Article Title"},{"value":"Communications in Nonlinear Science and Numerical Simulation","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cnsns.2014.07.015","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"Copyright \u00a9 2014 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}