{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,6,21]],"date-time":"2024-06-21T12:57:41Z","timestamp":1718974661931},"reference-count":65,"publisher":"Elsevier BV","issue":"8","content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Communications in Nonlinear Science and Numerical Simulation"],"published-print":{"date-parts":[[2014,8]]},"DOI":"10.1016\/j.cnsns.2013.01.007","type":"journal-article","created":{"date-parts":[[2013,2,20]],"date-time":"2013-02-20T01:46:26Z","timestamp":1361324786000},"page":"2559-2567","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":32,"title":["Optimal control of a parabolic distributed parameter system via radial basis functions"],"prefix":"10.1016","volume":"19","author":[{"given":"J.A.","family":"Rad","sequence":"first","affiliation":[]},{"given":"S.","family":"Kazem","sequence":"additional","affiliation":[]},{"given":"K.","family":"Parand","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.cnsns.2013.01.007_b0005","doi-asserted-by":"crossref","first-page":"1036","DOI":"10.2514\/3.21502","article-title":"Finite element method for the solution of state-constrained optimal control problems","volume":"18","author":"Bless","year":"1995","journal-title":"J Guid Control Dyn"},{"key":"10.1016\/j.cnsns.2013.01.007_b0010","series-title":"Computational optimal control","author":"Bulirsch","year":"1994"},{"key":"10.1016\/j.cnsns.2013.01.007_b0015","doi-asserted-by":"crossref","first-page":"1257","DOI":"10.1002\/aic.690330804","article-title":"On the optimization of differential-algebraic process systems","volume":"3","author":"Cuthrell","year":"1987","journal-title":"AICHE J"},{"key":"10.1016\/j.cnsns.2013.01.007_b0020","doi-asserted-by":"crossref","first-page":"1793","DOI":"10.1109\/9.467672","article-title":"The Pseudospectral Legendre method for discretizing optimal control problems","volume":"40","author":"Elnagar","year":"1995","journal-title":"IEEE Trans Automat Contr"},{"key":"10.1016\/j.cnsns.2013.01.007_b0025","doi-asserted-by":"crossref","first-page":"1061","DOI":"10.1137\/0727063","article-title":"Multiplier methods for nonlinear optimal control problems","volume":"37","author":"Hager","year":"1990","journal-title":"SIAM J Numer Anal"},{"key":"10.1016\/j.cnsns.2013.01.007_b0030","doi-asserted-by":"crossref","first-page":"592","DOI":"10.2514\/3.21662","article-title":"Direct optimization using Collocation based on high-order Gauss-Lobatto quadrature rules, J","volume":"19","author":"Herman","year":"1996","journal-title":"Guid Control Dyn"},{"key":"10.1016\/j.cnsns.2013.01.007_b0035","doi-asserted-by":"crossref","first-page":"159","DOI":"10.1137\/0331012","article-title":"A method of centers based on Barrier function methods for solving optimal control problems with continuum state and control constraints","volume":"31","author":"Polak","year":"1993","journal-title":"SIAM J Optim"},{"key":"10.1016\/j.cnsns.2013.01.007_b0040","doi-asserted-by":"crossref","first-page":"333","DOI":"10.1109\/9.192187","article-title":"A Chebyshev technique for solving nonlinear optimal control problems","volume":"33","author":"Vlassenbroeck","year":"1988","journal-title":"IEEE Trans Automat Contr"},{"key":"10.1016\/j.cnsns.2013.01.007_b0045","doi-asserted-by":"crossref","first-page":"195","DOI":"10.1023\/A:1018694111831","article-title":"Pseudospectral Chebyshev optimal control of constrained nonlinear dynamical systems","volume":"11","author":"Elnagar","year":"1998","journal-title":"Comput Optim Appl"},{"key":"10.1016\/j.cnsns.2013.01.007_b0050","doi-asserted-by":"crossref","first-page":"227","DOI":"10.1002\/(SICI)1099-1514(199705\/06)18:3<227::AID-OCA598>3.0.CO;2-A","article-title":"A collocation-type method for linear quadratic optimal control problems","volume":"18","author":"Elnagar","year":"1997","journal-title":"Optim Contr Appl Meth"},{"key":"10.1016\/j.cnsns.2013.01.007_b0055","doi-asserted-by":"crossref","first-page":"399","DOI":"10.1002\/mma.297","article-title":"Optimal control of singular systems via piecewise linear polynomial functions","volume":"25","author":"Razzaghi","year":"2002","journal-title":"Math Meth Appl Sci"},{"key":"10.1016\/j.cnsns.2013.01.007_b0060","doi-asserted-by":"crossref","first-page":"253","DOI":"10.1016\/0377-0427(94)90081-7","article-title":"Numerical solution of the controlled duffing oscillator by pseudospectral method","volume":"56","author":"Razzaghi","year":"1994","journal-title":"J Comput Appl Math"},{"key":"10.1016\/j.cnsns.2013.01.007_b0065","series-title":"Optimal systems control","author":"Sage","year":"1977"},{"key":"10.1016\/j.cnsns.2013.01.007_b0070","doi-asserted-by":"crossref","first-page":"319","DOI":"10.1109\/TAC.1980.1102278","article-title":"Solution of optimal control problem of linear diffusion equations via Walsh functions","volume":"25","author":"Mahapatra","year":"1980","journal-title":"IEEE Trans Automat Contr"},{"key":"10.1016\/j.cnsns.2013.01.007_b0075","doi-asserted-by":"crossref","first-page":"222","DOI":"10.1115\/1.3140662","article-title":"Optimal control of linear distributed parameter systems by shifted Legendre polynomial functions","volume":"105","author":"Wang","year":"1983","journal-title":"Trans ASME J Dyn Syst Meas Contr"},{"key":"10.1016\/j.cnsns.2013.01.007_b0080","doi-asserted-by":"crossref","first-page":"233","DOI":"10.1080\/00207178508933359","article-title":"Application of shifted Chebyshev series to the optimal control of linear distributed parameter systems","volume":"42","author":"Horng","year":"1985","journal-title":"Int J Contr"},{"key":"10.1016\/j.cnsns.2013.01.007_b0085","doi-asserted-by":"crossref","first-page":"1785","DOI":"10.1080\/00207178608933572","article-title":"Solution of two-point boundary value problems by generalized orthogonal polynomials and application to optimal control of lumped and distributed parameter systems","volume":"43","author":"Chang","year":"1986","journal-title":"Int J Contr"},{"key":"10.1016\/j.cnsns.2013.01.007_b0090","doi-asserted-by":"crossref","first-page":"1141","DOI":"10.1080\/00207728908910200","article-title":"Optimal control of linear distributed-parameter systems via polynomial series","volume":"20","author":"Razzaghi","year":"1989","journal-title":"Int J Syst Sci"},{"key":"10.1016\/j.cnsns.2013.01.007_b0095","doi-asserted-by":"crossref","first-page":"205","DOI":"10.1002\/(SICI)1099-1514(199805\/06)19:3<205::AID-OCA613>3.0.CO;2-W","article-title":"Optimal control of a parabolic distributed parameter system via orthogonal polynomials","volume":"19","author":"Sadek","year":"1998","journal-title":"Optim Contr Appl Meth"},{"key":"10.1016\/j.cnsns.2013.01.007_b0100","first-page":"161","article-title":"Optimal control of a linear distributed parameter system via shifted Legendre polynomials","volume":"4","author":"Kar","year":"2010","journal-title":"Int J Elec Inf Eng"},{"key":"10.1016\/j.cnsns.2013.01.007_b0105","doi-asserted-by":"crossref","first-page":"1013","DOI":"10.1086\/112164","article-title":"A numerical approach to the testing of fusion process","volume":"88","author":"Lucy","year":"1977","journal-title":"Astron J"},{"key":"10.1016\/j.cnsns.2013.01.007_b0110","doi-asserted-by":"crossref","first-page":"307","DOI":"10.1007\/BF00364252","article-title":"Generalizing the finite element method: diffuse approximation and diffuse elements","volume":"10","author":"Touzot","year":"1992","journal-title":"Comput Mech"},{"key":"10.1016\/j.cnsns.2013.01.007_b0115","doi-asserted-by":"crossref","first-page":"289","DOI":"10.1016\/S0045-7825(96)01087-0","article-title":"The partition of unity finite element method: basic theory and applications","volume":"139","author":"Melenk","year":"1996","journal-title":"Comput Meth Appl Mech Eng"},{"key":"10.1016\/j.cnsns.2013.01.007_b0120","doi-asserted-by":"crossref","first-page":"237","DOI":"10.1016\/S0045-7825(96)01085-7","article-title":"An h-p adaptative method using clouds","volume":"139","author":"Duarte","year":"1996","journal-title":"Comput Meth Appl Mech Eng"},{"key":"10.1016\/j.cnsns.2013.01.007_b0125","doi-asserted-by":"crossref","first-page":"229","DOI":"10.1002\/nme.1620370205","article-title":"Element-free Galerkin methods","volume":"37","author":"Belytschko","year":"1994","journal-title":"Int J Numer Meth Eng"},{"key":"10.1016\/j.cnsns.2013.01.007_b0130","doi-asserted-by":"crossref","first-page":"1081","DOI":"10.1002\/fld.1650200824","article-title":"Reproducing kernel particle methods","volume":"21","author":"Liu","year":"1995","journal-title":"Int J Numer Meth Fluids"},{"key":"10.1016\/j.cnsns.2013.01.007_b0135","doi-asserted-by":"crossref","first-page":"127","DOI":"10.1016\/0898-1221(90)90270-T","article-title":"Multiquadrics-A scattered data approximation scheme with applications to computational fluid-dynamics-I surface approximations and partial derivative estimates","volume":"19","author":"Kansa","year":"1990","journal-title":"Comput Math Appl"},{"key":"10.1016\/j.cnsns.2013.01.007_b0140","doi-asserted-by":"crossref","first-page":"400","DOI":"10.1016\/j.cam.2008.12.011","article-title":"Numerical solution of the nonlinear Klein\u2013Gordon equation using radial basis functions","volume":"230","author":"Dehghan","year":"2009","journal-title":"J Comput Appl Math"},{"key":"10.1016\/j.cnsns.2013.01.007_b0145","doi-asserted-by":"crossref","first-page":"5292","DOI":"10.1016\/j.amc.2011.11.013","article-title":"Numerical solution of nonlinear Volterra\u2013Fredholm\u2013Hammerstein integral equations via collocation method based on radial basis functions","volume":"218","author":"Parand","year":"2012","journal-title":"Appl Math Comput"},{"key":"10.1016\/j.cnsns.2013.01.007_b0150","doi-asserted-by":"crossref","first-page":"2049","DOI":"10.1016\/j.camwa.2012.03.104","article-title":"A numerical solution of the nonlinear controlled duffing oscillator by radial basis functions","volume":"64","author":"Rad","year":"2012","journal-title":"Comput Math Appl"},{"key":"10.1016\/j.cnsns.2013.01.007_b0155","series-title":"The meshless local Petrov\u2013Galerkin (MLPG) method","author":"Atluri","year":"2002"},{"key":"10.1016\/j.cnsns.2013.01.007_b0160","doi-asserted-by":"crossref","first-page":"1043","DOI":"10.1016\/j.apnum.2008.05.001","article-title":"Meshless local Petrov\u2013Galerkin (MLPG) method for the unsteady magnetohydrodynamic (MHD) flow through pipe with arbitrary wall conductivity","volume":"59","author":"Dehghan","year":"2009","journal-title":"Appl Numer Math"},{"key":"10.1016\/j.cnsns.2013.01.007_b0165","doi-asserted-by":"crossref","first-page":"747","DOI":"10.1016\/j.enganabound.2007.11.005","article-title":"The meshless local Petrov\u2013Galerkin MLPG method for the generalized two-dimensional non-linear Schrodinger equation","volume":"32","author":"Dehghan","year":"2008","journal-title":"Eng Anal Bound Elem"},{"key":"10.1016\/j.cnsns.2013.01.007_b0170","series-title":"An introduction to meshfree methods and their programing","author":"Liu","year":"2005"},{"key":"10.1016\/j.cnsns.2013.01.007_b0175","first-page":"181","article-title":"Scattered data interpolation: test of some methods","volume":"38","author":"Franke","year":"1982","journal-title":"Math Comput"},{"key":"10.1016\/j.cnsns.2013.01.007_b0180","doi-asserted-by":"crossref","first-page":"147","DOI":"10.1016\/0898-1221(90)90271-K","article-title":"Multiquadrics-A scattered data approximation scheme with applications to computational fluid-dynamics-II solutions to parabolic, hyperbolic and elliptic partial differential equations","volume":"19","author":"Kansa","year":"1990","journal-title":"Comput Math Appl"},{"key":"10.1016\/j.cnsns.2013.01.007_b0185","doi-asserted-by":"crossref","first-page":"275","DOI":"10.1016\/S0096-3003(96)00109-9","article-title":"Application of the multiquadric method for numerical solution of elliptic partial differential equations","volume":"84","author":"Sharan","year":"1997","journal-title":"Appl Math Comput"},{"key":"10.1016\/j.cnsns.2013.01.007_b0190","doi-asserted-by":"crossref","first-page":"1263","DOI":"10.1002\/(SICI)1097-0207(19980815)42:7<1263::AID-NME431>3.0.CO;2-I","article-title":"A numerical method for heat transfer problems using collocation and radial basis functions","volume":"42","author":"Zerroukat","year":"1998","journal-title":"Int J Numer Meth Eng"},{"key":"10.1016\/j.cnsns.2013.01.007_b0195","doi-asserted-by":"crossref","first-page":"185","DOI":"10.1016\/S0893-6080(00)00095-2","article-title":"Numerical solution of differential equations using multiquadric radial basis function networks","volume":"14","author":"Mai-Duy","year":"2001","journal-title":"Neural Netw"},{"key":"10.1016\/j.cnsns.2013.01.007_b0200","doi-asserted-by":"crossref","first-page":"206","DOI":"10.1016\/j.enganabound.2009.09.003","article-title":"A method for solving partial differential equations via radial basis functions: application to the heat equation","volume":"34","author":"Tatari","year":"2010","journal-title":"Eng Anal Bound Elem"},{"key":"10.1016\/j.cnsns.2013.01.007_b0205","doi-asserted-by":"crossref","first-page":"1754","DOI":"10.1016\/j.amc.2007.02.063","article-title":"Numerical solution of the nonlinear Fredholm integral equations by positive definite functions","volume":"190","author":"Alipanah","year":"2007","journal-title":"Appl Math Comput"},{"key":"10.1016\/j.cnsns.2013.01.007_b0210","doi-asserted-by":"crossref","first-page":"79","DOI":"10.1016\/j.apnum.2004.07.004","article-title":"Adaptive radial basis function method for time dependent partial differential equations","volume":"54","author":"Sarra","year":"2005","journal-title":"Appl Numer Math"},{"key":"10.1016\/j.cnsns.2013.01.007_b0215","doi-asserted-by":"crossref","first-page":"181","DOI":"10.1016\/j.enganabound.2011.06.012","article-title":"Radial basis functions methods for solving Fokker\u2013Planck equation","volume":"36","author":"Kazem","year":"2012","journal-title":"Eng Anal Bound Elem"},{"key":"10.1016\/j.cnsns.2013.01.007_b0220","doi-asserted-by":"crossref","first-page":"399","DOI":"10.1016\/j.camwa.2011.10.052","article-title":"A meshless method on non-Fickian flows with mixing length growth in porous media based on radial basis functions","volume":"64","author":"Kazem","year":"2012","journal-title":"Comput Math Appl"},{"key":"10.1016\/j.cnsns.2013.01.007_b0225","article-title":"Kansa method for the solution of a parabolic equation with an unknown spacewise-dependent coefficient subject to an extra measurement","author":"Parand","year":"2012","journal-title":"Comput Phys Commun"},{"key":"10.1016\/j.cnsns.2013.01.007_b0230","doi-asserted-by":"crossref","first-page":"193","DOI":"10.1023\/A:1018975909870","article-title":"An algorithm for selecting a good parameter c in radial basis function interpolation","volume":"11","author":"Rippa","year":"1999","journal-title":"Adv Comput Math"},{"key":"10.1016\/j.cnsns.2013.01.007_b0235","doi-asserted-by":"crossref","first-page":"571","DOI":"10.1002\/num.10062","article-title":"Exponential convergence and H-c multiquadric Collocation method for partial differential equations","volume":"19","author":"Cheng","year":"2003","journal-title":"Numer Meth Partial Differ Equ"},{"key":"10.1016\/j.cnsns.2013.01.007_b0240","doi-asserted-by":"crossref","first-page":"29","DOI":"10.1016\/0898-1221(91)90123-L","article-title":"The parameter R2 in multiquadric interpolation","volume":"21","author":"Carlson","year":"1991","journal-title":"Comput Math Appl"},{"key":"10.1016\/j.cnsns.2013.01.007_b0245","unstructured":"A.E. Tarwater, A parameter study of Hardy\u2019s multiquadric method for scattered data interpolation, Report UCRL-53670, Lawrence Livermore National Laboratory, 1985."},{"key":"10.1016\/j.cnsns.2013.01.007_b0250","doi-asserted-by":"crossref","first-page":"346","DOI":"10.1007\/s11075-007-9072-8","article-title":"On choosing optimal shape parameters for RBF approximation","volume":"45","author":"Fasshauer","year":"2007","journal-title":"Numer Algorithms"},{"key":"10.1016\/j.cnsns.2013.01.007_b0255","series-title":"The theory of radial basis function approximation in 1990","author":"Powell","year":"1992"},{"key":"10.1016\/j.cnsns.2013.01.007_b0260","unstructured":"M.D. Buhmann, Radial basis functions, Acta Numerica."},{"key":"10.1016\/j.cnsns.2013.01.007_b0265","series-title":"Radial basis functions: theory and implementations","author":"Buhmann","year":"2004"},{"key":"10.1016\/j.cnsns.2013.01.007_b0270","series-title":"Scattered data approximation","author":"Wendland","year":"2005"},{"key":"10.1016\/j.cnsns.2013.01.007_b0275","doi-asserted-by":"crossref","first-page":"539","DOI":"10.1016\/S0898-1221(01)00304-2","article-title":"Space-time radial basis functions","volume":"43","author":"Myers","year":"2002","journal-title":"Comput Math Appl"},{"key":"10.1016\/j.cnsns.2013.01.007_b0280","doi-asserted-by":"crossref","first-page":"661","DOI":"10.1016\/j.enganabound.2008.10.001","article-title":"Application of meshfree Collocation method to a class of nonlinear partial differential equations","volume":"33","author":"Khattak","year":"2009","journal-title":"Eng Anal Bound Elem"},{"key":"10.1016\/j.cnsns.2013.01.007_b0285","doi-asserted-by":"crossref","first-page":"461","DOI":"10.1007\/s11075-009-9293-0","article-title":"A meshless method for numerical solution of the one-dimensional wave equation with an integral condition using radial basis functions","volume":"52","author":"Dehghan","year":"2009","journal-title":"Numer Algorithms"},{"key":"10.1016\/j.cnsns.2013.01.007_b0290","doi-asserted-by":"crossref","first-page":"149","DOI":"10.1093\/imanum\/drn064","article-title":"Comparisons between pseudospectral and radial basis function derivative approximations","volume":"30","author":"Fornberg","year":"2010","journal-title":"IMA J Numer Anal"},{"key":"10.1016\/j.cnsns.2013.01.007_b0295","doi-asserted-by":"crossref","first-page":"473","DOI":"10.1016\/S0898-1221(01)00299-1","article-title":"Observations on the behavior of radial basis function approximations near boundaries","volume":"43","author":"Fornberg","year":"2002","journal-title":"Comput Math Appl"},{"key":"10.1016\/j.cnsns.2013.01.007_b0300","doi-asserted-by":"crossref","first-page":"1396","DOI":"10.1016\/j.cnsns.2010.07.011","article-title":"Comparison between two common collocation approaches based on radial basis functions for the case of heat transfer equations arising in porous medium","volume":"16","author":"Parand","year":"2010","journal-title":"Commun Nonlinear Sci Numer Simul"},{"key":"10.1016\/j.cnsns.2013.01.007_b0305","doi-asserted-by":"crossref","first-page":"824","DOI":"10.1002\/nme.1220","article-title":"Solving high order ordinary differential equations with radial basis function networks","volume":"62","author":"Mai-Duy","year":"2005","journal-title":"Int J Numer Meth Eng"},{"key":"10.1016\/j.cnsns.2013.01.007_b0310","doi-asserted-by":"crossref","first-page":"924","DOI":"10.1002\/num.20297","article-title":"Use of radial basis functions for solving the second-order parabolic equation with nonlocal boundary conditions","volume":"24","author":"Dehghan","year":"2008","journal-title":"Numer Meth Partial Differ Equ"},{"key":"10.1016\/j.cnsns.2013.01.007_b0315","series-title":"Solving partial differential equations by collocation with radial basis functions","author":"Fasshauer","year":"1997"},{"key":"10.1016\/j.cnsns.2013.01.007_b0320","series-title":"High order numerical methods and algorithms","author":"Shen","year":"2005"},{"key":"10.1016\/j.cnsns.2013.01.007_b0325","series-title":"Optimization and regularization for computational inverse problems and applications","author":"Wang","year":"2010"}],"container-title":["Communications in Nonlinear Science and Numerical Simulation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1007570413000336?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1007570413000336?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2018,10,18]],"date-time":"2018-10-18T14:53:40Z","timestamp":1539874420000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1007570413000336"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2014,8]]},"references-count":65,"journal-issue":{"issue":"8","published-print":{"date-parts":[[2014,8]]}},"alternative-id":["S1007570413000336"],"URL":"https:\/\/doi.org\/10.1016\/j.cnsns.2013.01.007","relation":{},"ISSN":["1007-5704"],"issn-type":[{"value":"1007-5704","type":"print"}],"subject":[],"published":{"date-parts":[[2014,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Optimal control of a parabolic distributed parameter system via radial basis functions","name":"articletitle","label":"Article Title"},{"value":"Communications in Nonlinear Science and Numerical Simulation","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cnsns.2013.01.007","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"Copyright \u00a9 2013 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}