{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,3]],"date-time":"2024-09-03T00:17:44Z","timestamp":1725322664461},"reference-count":35,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.es","clinicalkey.com.au","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computer Methods and Programs in Biomedicine"],"published-print":{"date-parts":[[2024,10]]},"DOI":"10.1016\/j.cmpb.2024.108357","type":"journal-article","created":{"date-parts":[[2024,7,29]],"date-time":"2024-07-29T15:41:49Z","timestamp":1722267709000},"page":"108357","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Multimodal deep learning models utilizing chest X-ray and electronic health record data for predictive screening of acute heart failure in emergency department"],"prefix":"10.1016","volume":"255","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-5796-6971","authenticated-orcid":false,"given":"Chih-Kuo","family":"Lee","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1375-0164","authenticated-orcid":false,"given":"Ting-Li","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Jeng-En","family":"Wu","sequence":"additional","affiliation":[]},{"given":"Min-Tsun","family":"Liao","sequence":"additional","affiliation":[]},{"given":"Chiehhung","family":"Wang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6154-7750","authenticated-orcid":false,"given":"Weichung","family":"Wang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5737-6960","authenticated-orcid":false,"given":"Cheng-Ying","family":"Chou","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.cmpb.2024.108357_bib0001","doi-asserted-by":"crossref","first-page":"3958","DOI":"10.1161\/CIRCULATIONAHA.105.590091","article-title":"Acute heart failure syndromes: current state and framework for future research","volume":"112","author":"Gheorghiade","year":"2005","journal-title":"Circulation"},{"key":"10.1016\/j.cmpb.2024.108357_bib0002","doi-asserted-by":"crossref","first-page":"2650","DOI":"10.1002\/ehf2.12847","article-title":"In-hospital and long-term mortality for acute heart failure: analysis at the time of admission to the emergency department","volume":"7","author":"Lombardi","year":"2020","journal-title":"ESC. Heart. Fail."},{"key":"10.1016\/j.cmpb.2024.108357_bib0003","first-page":"269","article-title":"The burden of acute heart failure on US emergency departments","volume":"2","author":"Storrow","year":"2014","journal-title":"JACC"},{"key":"10.1016\/j.cmpb.2024.108357_bib0004","doi-asserted-by":"crossref","first-page":"223","DOI":"10.1111\/acem.12878","article-title":"Diagnosing acute heart failure in the emergency department: a systematic review and meta-analysis","volume":"23","author":"Martindale","year":"2016","journal-title":"Acad. Emergency Med."},{"key":"10.1016\/j.cmpb.2024.108357_bib0005","doi-asserted-by":"crossref","first-page":"861","DOI":"10.1007\/s11739-016-1498-3","article-title":"Which method is best for an early accurate diagnosis of acute heart failure? Comparison between lung ultrasound, chest X-ray and NT pro-BNP performance: a prospective study","volume":"12","author":"Sartini","year":"2017","journal-title":"Intern. Emerg. Med."},{"key":"10.1016\/j.cmpb.2024.108357_bib0006","doi-asserted-by":"crossref","first-page":"e263","DOI":"10.1016\/j.jacc.2021.12.012","article-title":"2022 AHA\/ACC\/HFSA guideline for the management of heart failure: a report of the American college of cardiology\/American heart association joint committee on clinical practice guidelines","volume":"79","author":"Heidenreich","year":"2022","journal-title":"J. Am. Coll. Cardiol."},{"key":"10.1016\/j.cmpb.2024.108357_bib0007","first-page":"350","article-title":"The diagnostic accuracy of the natriuretic peptides in heart failure: systematic review and diagnostic meta-analysis in the acute care setting","author":"Roberts","year":"2015","journal-title":"BMJ"},{"key":"10.1016\/j.cmpb.2024.108357_bib0008","doi-asserted-by":"crossref","DOI":"10.1016\/j.cmpb.2022.106800","article-title":"Deep unsupervised endoscopic image enhancement based on multi-image fusion","volume":"221","author":"Huang","year":"2022","journal-title":"Comput. Methods Programs Biomed."},{"key":"10.1016\/j.cmpb.2024.108357_bib0009","doi-asserted-by":"crossref","DOI":"10.1016\/j.cmpb.2023.107359","article-title":"Extensive deep learning model to enhance electrocardiogram application via latent cardiovascular feature extraction from identity identification","volume":"231","author":"Lou","year":"2023","journal-title":"Comput. Methods Programs Biomed."},{"key":"10.1016\/j.cmpb.2024.108357_bib0010","doi-asserted-by":"crossref","first-page":"781","DOI":"10.1536\/ihj.19-714","article-title":"Diagnosing heart failure from chest X-ray images using deep learning","volume":"61","author":"Matsumoto","year":"2020","journal-title":"Int. Heart. J."},{"key":"10.1016\/j.cmpb.2024.108357_bib0011","doi-asserted-by":"crossref","first-page":"1060","DOI":"10.1093\/jamia\/ocac030","article-title":"Combining chest X-rays and electronic health record (EHR) data using machine learning to diagnose acute respiratory failure","volume":"29","author":"Jabbour","year":"2022","journal-title":"J. Am. Med. Inform. Ass."},{"key":"10.1016\/j.cmpb.2024.108357_bib0012","doi-asserted-by":"crossref","first-page":"514","DOI":"10.1148\/radiol.2018180887","article-title":"Chest radiographs in congestive heart failure: visualizing neural network learning","volume":"290","author":"Seah","year":"2019","journal-title":"Radiology."},{"key":"10.1016\/j.cmpb.2024.108357_bib0013","first-page":"2007","article-title":"Machine learning applied to routine blood tests and clinical metadata to identify and classify heart failure","volume":"2021","author":"James","year":"2021","journal-title":"medRxiv."},{"key":"10.1016\/j.cmpb.2024.108357_bib0014","article-title":"Predicting pulmonary edema using deep learning and image segmentation","author":"David Davila-Garcia","year":"2023","journal-title":"DSC 180B: Section A14"},{"key":"10.1016\/j.cmpb.2024.108357_bib0015","article-title":"MIMIC-IV-ED (version 1.0)","author":"Johnson","year":"2021","journal-title":"PhysioNet"},{"key":"10.1016\/j.cmpb.2024.108357_bib0016","doi-asserted-by":"crossref","first-page":"e215","DOI":"10.1161\/01.CIR.101.23.e215","article-title":"PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals","volume":"101","author":"Goldberger","year":"2000","journal-title":"Circulation"},{"key":"10.1016\/j.cmpb.2024.108357_bib0017","doi-asserted-by":"crossref","first-page":"3599","DOI":"10.1093\/eurheartj\/ehab368","volume":"42","author":"McDonagh","year":"2021","journal-title":"Eur. Heart J."},{"issue":"2","key":"10.1016\/j.cmpb.2024.108357_bib0018","doi-asserted-by":"crossref","first-page":"192","DOI":"10.1007\/s00134-016-4601-3","article-title":"Assessment of heart rate, acidosis, consciousness, oxygenation, and respiratory rate to predict noninvasive ventilation failure in hypoxemic patients","volume":"43","author":"Duan","year":"2017","journal-title":"Intensive Care Med."},{"issue":"1","key":"10.1016\/j.cmpb.2024.108357_bib0019","doi-asserted-by":"crossref","first-page":"75","DOI":"10.1159\/000213051","article-title":"Rapid clinical assessment of patients with acute heart failure: first blood pressure and oxygen saturation\u2013is that all we need?","volume":"114","author":"Milo-Cotter","year":"2009","journal-title":"Cardiology"},{"issue":"11","key":"10.1016\/j.cmpb.2024.108357_bib0020","doi-asserted-by":"crossref","first-page":"767","DOI":"10.7326\/0003-4819-156-11-201206050-00003","article-title":"Prediction of heart failure mortality in emergent care: a cohort study","volume":"156","author":"Lee","year":"2012","journal-title":"Ann. Intern. Med."},{"issue":"2","key":"10.1016\/j.cmpb.2024.108357_bib0021","doi-asserted-by":"crossref","first-page":"147","DOI":"10.1007\/s00134-015-4041-5","article-title":"Acute heart failure and cardiogenic shock: a multidisciplinary practical guidance","volume":"42","author":"Mebazaa","year":"2016","journal-title":"Intensive Care Med."},{"issue":"8","key":"10.1016\/j.cmpb.2024.108357_bib0022","doi-asserted-by":"crossref","first-page":"1273","DOI":"10.1161\/CIRCRESAHA.116.307547","article-title":"Cardiovascular disease in women: clinical perspectives","volume":"118","author":"Garcia","year":"2016","journal-title":"Circ. Res."},{"key":"10.1016\/j.cmpb.2024.108357_bib0023","doi-asserted-by":"crossref","first-page":"141","DOI":"10.1016\/j.ijcard.2018.05.084","article-title":"Quality of life and outcome in heart failure with preserved ejection fraction: when sex matters","volume":"267","author":"Passino","year":"2018","journal-title":"Int. J. Cardiol."},{"issue":"13","key":"10.1016\/j.cmpb.2024.108357_bib0024","doi-asserted-by":"crossref","first-page":"1214","DOI":"10.1161\/CIRCULATIONAHA.116.025941","article-title":"Age-specific trends in incidence, mortality, and comorbidities of heart failure in Denmark, 1995 to 2012","volume":"135","author":"Christiansen","year":"2017","journal-title":"Circulation"},{"issue":"1","key":"10.1016\/j.cmpb.2024.108357_bib0025","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1093\/eurheartj\/eht278","article-title":"Heart failure in young adults: 20-year trends in hospitalization, aetiology, and case fatality in Sweden","volume":"35","author":"Barasa","year":"2014","journal-title":"Eur. Heart. J."},{"key":"10.1016\/j.cmpb.2024.108357_bib0026","series-title":"2020 IEEE conference on computational intelligence in bioinformatics and computational biology (CIBCB)","first-page":"1","article-title":"A survey of loss functions for semantic segmentation","author":"Jadon","year":"2020"},{"key":"10.1016\/j.cmpb.2024.108357_bib0027","doi-asserted-by":"crossref","unstructured":"G. Huang, Z. Liu, L. Van Der Maaten, K.Q. Weinberger, Densely connected convolutional networks, Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 4700\u20134708.","DOI":"10.1109\/CVPR.2017.243"},{"key":"10.1016\/j.cmpb.2024.108357_bib0028","doi-asserted-by":"crossref","unstructured":"J. Irvin, P. Rajpurkar, M. Ko, Y. Yu, S. Ciurea-Ilcus, C. Chute, H. Marklund, B. Haghgoo, R. Ball, K. Shpanskaya, Chexpert: a large chest radiograph dataset with uncertainty labels and expert comparison, Proceedings of the AAAI conference on artificial intelligence, 2019, pp. 590\u2013597.","DOI":"10.1609\/aaai.v33i01.3301590"},{"key":"10.1016\/j.cmpb.2024.108357_bib0029","doi-asserted-by":"crossref","first-page":"136","DOI":"10.1038\/s41746-020-00341-z","article-title":"Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines","volume":"3","author":"Huang","year":"2020","journal-title":"NPJ. Digit. Med."},{"key":"10.1016\/j.cmpb.2024.108357_bib0030","doi-asserted-by":"crossref","unstructured":"B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, A. Torralba, Learning deep features for discriminative localization, Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 2921\u20132929.","DOI":"10.1109\/CVPR.2016.319"},{"key":"10.1016\/j.cmpb.2024.108357_bib0031","first-page":"30","article-title":"A unified approach to interpreting model predictions","author":"Lundberg","year":"2017","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.cmpb.2024.108357_bib0032","doi-asserted-by":"crossref","first-page":"486","DOI":"10.1002\/clc.4960110710","article-title":"The role of the chest X-ray in the evaluation of chronic severe heart failure: things are not always as they appear","volume":"11","author":"Costanzo","year":"1988","journal-title":"Clin. Cardiol."},{"key":"10.1016\/j.cmpb.2024.108357_bib0033","doi-asserted-by":"crossref","first-page":"902","DOI":"10.1002\/ehf2.12317","article-title":"Diagnosing and grading heart failure with tomographic perfusion lung scintigraphy: validation with right heart catheterization","volume":"5","author":"J\u00f6gi","year":"2018","journal-title":"ESC. Heart. Fail."},{"key":"10.1016\/j.cmpb.2024.108357_bib0034","doi-asserted-by":"crossref","first-page":"4232","DOI":"10.3390\/s22114232","article-title":"A fuzzy similarity-based approach to classify numerically simulated and experimentally detected carbon fiber-reinforced polymer plate defects","volume":"22","author":"Versaci","year":"2022","journal-title":"Sensors"},{"key":"10.1016\/j.cmpb.2024.108357_bib0035","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2022.106483","article-title":"A fuzzy fine-tuned model for COVID-19 diagnosis","volume":"153","author":"Esmi","year":"2023","journal-title":"Comput. Biol. Med."}],"container-title":["Computer Methods and Programs in Biomedicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S016926072400350X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S016926072400350X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,9,2]],"date-time":"2024-09-02T23:04:03Z","timestamp":1725318243000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S016926072400350X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,10]]},"references-count":35,"alternative-id":["S016926072400350X"],"URL":"https:\/\/doi.org\/10.1016\/j.cmpb.2024.108357","relation":{},"ISSN":["0169-2607"],"issn-type":[{"type":"print","value":"0169-2607"}],"subject":[],"published":{"date-parts":[[2024,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Multimodal deep learning models utilizing chest X-ray and electronic health record data for predictive screening of acute heart failure in emergency department","name":"articletitle","label":"Article Title"},{"value":"Computer Methods and Programs in Biomedicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cmpb.2024.108357","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"108357"}}