{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,10]],"date-time":"2024-10-10T04:17:01Z","timestamp":1728533821916},"reference-count":35,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.es","clinicalkey.com.au","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computer Methods and Programs in Biomedicine"],"published-print":{"date-parts":[[2024,10]]},"DOI":"10.1016\/j.cmpb.2024.108286","type":"journal-article","created":{"date-parts":[[2024,7,3]],"date-time":"2024-07-03T00:16:06Z","timestamp":1719965766000},"page":"108286","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Multiscale-temporal Feature Extraction and boundary confusion alleviation for VAG-based fine-grained multi-grade osteoarthritis deterioration monitoring"],"prefix":"10.1016","volume":"255","author":[{"given":"Yangwuyong","family":"Zhang","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1538-5789","authenticated-orcid":false,"given":"Tongjie","family":"Pan","sequence":"additional","affiliation":[]},{"given":"Yalan","family":"Ye","sequence":"additional","affiliation":[]},{"given":"Zhengyi","family":"Wan","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7543-1054","authenticated-orcid":false,"given":"Benyuan","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Tan","family":"Ding","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"6","key":"10.1016\/j.cmpb.2024.108286_b1","doi-asserted-by":"crossref","first-page":"591","DOI":"10.1001\/jama.2013.13805","article-title":"The state of US health, 1990\u20132010: burden of diseases, injuries, and risk factors","volume":"310","author":"Murray","year":"2013","journal-title":"Jama"},{"issue":"6","key":"10.1016\/j.cmpb.2024.108286_b2","doi-asserted-by":"crossref","first-page":"1697","DOI":"10.1002\/art.34453","article-title":"Osteoarthritis: a disease of the joint as an organ","volume":"64","author":"Loeser","year":"2012","journal-title":"Arthritis Rheum."},{"key":"10.1016\/j.cmpb.2024.108286_b3","doi-asserted-by":"crossref","first-page":"1581","DOI":"10.1007\/s10067-014-2692-1","article-title":"Impact and therapy of osteoarthritis: the Arthritis Care OA Nation 2012 survey","volume":"34","author":"Conaghan","year":"2015","journal-title":"Clin. Rheumatol."},{"issue":"6","key":"10.1016\/j.cmpb.2024.108286_b4","doi-asserted-by":"crossref","first-page":"461","DOI":"10.1177\/1941738109350438","article-title":"The basic science of articular cartilage: structure, composition, and function","volume":"1","author":"Sophia Fox","year":"2009","journal-title":"Sports Health"},{"issue":"2","key":"10.1016\/j.cmpb.2024.108286_b5","doi-asserted-by":"crossref","first-page":"288","DOI":"10.1302\/0301-620X.69B2.3818762","article-title":"Vibration arthrography as a diagnostic aid in diseases of the knee. A preliminary report","volume":"69","author":"McCoy","year":"1987","journal-title":"J. Bone Joint Surg. Br. Vol."},{"key":"10.1016\/j.cmpb.2024.108286_b6","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2019.101580","article-title":"A telehealth system framework for assessing knee-joint conditions using vibroarthrographic signals","volume":"55","author":"Athavale","year":"2020","journal-title":"Biomed. Signal Process. Control"},{"key":"10.1016\/j.cmpb.2024.108286_b7","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2021.102796","article-title":"A novel automatic Knee Osteoarthritis detection method based on vibroarthrographic signals","volume":"68","author":"Wang","year":"2021","journal-title":"Biomed. Signal Process. Control"},{"key":"10.1016\/j.cmpb.2024.108286_b8","doi-asserted-by":"crossref","DOI":"10.1016\/j.cmpb.2022.106992","article-title":"A method of feature fusion and dimension reduction for knee joint pathology screening and separability evaluation criteria","volume":"224","author":"Ma","year":"2022","journal-title":"Comput. Methods Programs Biomed."},{"key":"10.1016\/j.cmpb.2024.108286_b9","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2021.102808","article-title":"Screening of knee-joint vibroarthrographic signals using time and spectral domain features","volume":"68","author":"Shidore","year":"2021","journal-title":"Biomed. Signal Process. Control"},{"key":"10.1016\/j.cmpb.2024.108286_b10","series-title":"2017 International Conference on Intelligent Computing and Control Systems","first-page":"998","article-title":"Assessment of cartilage disorder in knee with VAG signals using wavelet transform and neural network","author":"Poornapushpakala","year":"2017"},{"key":"10.1016\/j.cmpb.2024.108286_b11","series-title":"Information Systems Design and Intelligent Applications: Proceedings of Third International Conference India 2016, Vol. 1","first-page":"719","article-title":"Denoising knee joint vibration signals using variational mode decomposition","author":"Sundar","year":"2016"},{"key":"10.1016\/j.cmpb.2024.108286_b12","doi-asserted-by":"crossref","first-page":"37","DOI":"10.1016\/j.cmpb.2017.10.027","article-title":"Analysis and multiclass classification of pathological knee joints using vibroarthrographic signals","volume":"154","author":"Kr\u0119cisz","year":"2018","journal-title":"Comput. Methods Programs Biomed."},{"key":"10.1016\/j.cmpb.2024.108286_b13","doi-asserted-by":"crossref","DOI":"10.1016\/j.cmpb.2021.106519","article-title":"Monitoring deterioration of knee osteoarthritis using vibration arthrography in daily activities","volume":"213","author":"Ye","year":"2022","journal-title":"Comput. Methods Programs Biomed."},{"key":"10.1016\/j.cmpb.2024.108286_b14","doi-asserted-by":"crossref","unstructured":"Dimitri Kraft, Gerald Bieber, Vibroarthrography using convolutional neural networks, in: Proceedings of the 13th ACM International Conference on Pervasive Technologies Related to Assistive Environments, 2020, pp. 1\u20136.","DOI":"10.1145\/3389189.3397993"},{"issue":"2","key":"10.1016\/j.cmpb.2024.108286_b15","first-page":"129","article-title":"Research progress of noninvasive detection and classification of knee joint diseases based on VAG signal","volume":"40","author":"Jia","year":"2021","journal-title":"Chin. J. Biomed. Eng."},{"issue":"04","key":"10.1016\/j.cmpb.2024.108286_b16","first-page":"550","article-title":"Early screening methods for knee osteoarthritis based on vibroarthrographic signals and deep network","volume":"51","author":"Tian-tian","year":"2021","journal-title":"J. Northw. Univ.(Nat. Sci. Ed.)"},{"issue":"4","key":"10.1016\/j.cmpb.2024.108286_b17","first-page":"554","article-title":"Application of deeplearning in automate drecognition of vibroarthro graphicsignals","volume":"50","author":"Rui","year":"2020","journal-title":"J. Northw. Univ.(Nat. Sci. Ed.)"},{"year":"2016","series-title":"Inception-v4, inception-ResNet and the impact of residual connections on learning","author":"Szegedy","key":"10.1016\/j.cmpb.2024.108286_b18"},{"key":"10.1016\/j.cmpb.2024.108286_b19","series-title":"2014 IEEE 27th Canadian Conference on Electrical and Computer Engineering","first-page":"1","article-title":"Classification of knee joint vibroarthrographic signals using k-nearest neighbor algorithm","author":"Liu","year":"2014"},{"key":"10.1016\/j.cmpb.2024.108286_b20","doi-asserted-by":"crossref","DOI":"10.1155\/2013\/904267","article-title":"Knee joint vibration signal analysis with matching pursuit decomposition and dynamic weighted classifier fusion","volume":"2013","author":"Cai","year":"2013","journal-title":"Comput. Math. Methods Med."},{"issue":"1","key":"10.1016\/j.cmpb.2024.108286_b21","doi-asserted-by":"crossref","first-page":"23","DOI":"10.1016\/j.bspc.2012.05.004","article-title":"Fractal analysis of knee-joint vibroarthrographic signals via power spectral analysis","volume":"8","author":"Rangayyan","year":"2013","journal-title":"Biomed. Signal Process. Control"},{"issue":"1","key":"10.1016\/j.cmpb.2024.108286_b22","doi-asserted-by":"crossref","first-page":"58","DOI":"10.1007\/s42979-022-01476-4","article-title":"DNN-based knee OA severity prediction system: pathologically robust feature engineering approach","volume":"4","author":"Ruikar","year":"2022","journal-title":"SN Comput. Sci."},{"key":"10.1016\/j.cmpb.2024.108286_b23","series-title":"Computer Vision\u2013ECCV 2016: 14th European Conference, Amsterdam, the Netherlands, October 11\u201314, 2016, Proceedings, Part VII. Vol. 14","first-page":"499","article-title":"A discriminative feature learning approach for deep face recognition","author":"Wen","year":"2016"},{"key":"10.1016\/j.cmpb.2024.108286_b24","doi-asserted-by":"crossref","unstructured":"Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, Zbigniew Wojna, Rethinking the inception architecture for computer vision, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 2818\u20132826.","DOI":"10.1109\/CVPR.2016.308"},{"key":"10.1016\/j.cmpb.2024.108286_b25","doi-asserted-by":"crossref","unstructured":"Jie Hu, Li Shen, Gang Sun, Squeeze-and-excitation networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132\u20137141.","DOI":"10.1109\/CVPR.2018.00745"},{"year":"2021","series-title":"Classification of Knee Diseases Based on VAG Signal","author":"Jia","key":"10.1016\/j.cmpb.2024.108286_b26"},{"key":"10.1016\/j.cmpb.2024.108286_b27","series-title":"2018 IEEE International Symposium on Medical Measurements and Applications","first-page":"1","article-title":"Ecgnet: Deep network for arrhythmia classification","author":"Murugesan","year":"2018"},{"issue":"21","key":"10.1016\/j.cmpb.2024.108286_b28","doi-asserted-by":"crossref","first-page":"7639","DOI":"10.3390\/app10217639","article-title":"Sleep state classification using power spectral density and residual neural network with multichannel EEG signals","volume":"10","author":"Hasan","year":"2020","journal-title":"Appl. Sci."},{"key":"10.1016\/j.cmpb.2024.108286_b29","doi-asserted-by":"crossref","first-page":"720","DOI":"10.1016\/j.compeleceng.2018.02.046","article-title":"Time-frequency based feature extraction for the analysis of vibroarthographic signals","volume":"69","author":"Nalband","year":"2018","journal-title":"Comput. Electr. Eng."},{"key":"10.1016\/j.cmpb.2024.108286_b30","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2022.104229","article-title":"Dual-stream parallel model of cartilage injury diagnosis based on local centroid optimization","volume":"80","author":"Fang","year":"2023","journal-title":"Biomed. Signal Process. Control"},{"key":"10.1016\/j.cmpb.2024.108286_b31","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2021.103133","article-title":"A complex network based approach for knee Osteoarthritis detection: Data from the Osteoarthritis initiative","volume":"71","author":"Ribas","year":"2022","journal-title":"Biomed. Signal Process. Control"},{"key":"10.1016\/j.cmpb.2024.108286_b32","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2021.102343","article-title":"DADP: dynamic abnormality detection and progression for longitudinal knee magnetic resonance images from the osteoarthritis initiative","volume":"77","author":"Huang","year":"2022","journal-title":"Med. Image Anal."},{"issue":"4","key":"10.1016\/j.cmpb.2024.108286_b33","doi-asserted-by":"crossref","first-page":"398","DOI":"10.1007\/s11547-022-01476-7","article-title":"Automatic detection and classification of knee osteoarthritis using deep learning approach","volume":"127","author":"Abdullah","year":"2022","journal-title":"La Radiologia Medica"},{"issue":"10","key":"10.1016\/j.cmpb.2024.108286_b34","doi-asserted-by":"crossref","first-page":"2362","DOI":"10.3390\/diagnostics12102362","article-title":"Detection and classification of knee osteoarthritis","volume":"12","author":"Cueva","year":"2022","journal-title":"Diagnostics"},{"key":"10.1016\/j.cmpb.2024.108286_b35","doi-asserted-by":"crossref","first-page":"84","DOI":"10.1016\/j.compmedimag.2019.06.002","article-title":"Fully automatic knee osteoarthritis severity grading using deep neural networks with a novel ordinal loss","volume":"75","author":"Chen","year":"2019","journal-title":"Comput. Med. Imaging Graph."}],"container-title":["Computer Methods and Programs in Biomedicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0169260724002815?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0169260724002815?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,10,9]],"date-time":"2024-10-09T05:59:10Z","timestamp":1728453550000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0169260724002815"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,10]]},"references-count":35,"alternative-id":["S0169260724002815"],"URL":"https:\/\/doi.org\/10.1016\/j.cmpb.2024.108286","relation":{},"ISSN":["0169-2607"],"issn-type":[{"type":"print","value":"0169-2607"}],"subject":[],"published":{"date-parts":[[2024,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Multiscale-temporal Feature Extraction and boundary confusion alleviation for VAG-based fine-grained multi-grade osteoarthritis deterioration monitoring","name":"articletitle","label":"Article Title"},{"value":"Computer Methods and Programs in Biomedicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cmpb.2024.108286","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"108286"}}