{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,6]],"date-time":"2024-07-06T15:34:23Z","timestamp":1720280063084},"reference-count":61,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,3,3]],"date-time":"2024-03-03T00:00:00Z","timestamp":1709424000000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100004070","name":"Khalifa University","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100004070","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.es","clinicalkey.com.au","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computer Methods and Programs in Biomedicine"],"published-print":{"date-parts":[[2024,5]]},"DOI":"10.1016\/j.cmpb.2024.108107","type":"journal-article","created":{"date-parts":[[2024,3,6]],"date-time":"2024-03-06T17:18:02Z","timestamp":1709745482000},"page":"108107","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Circadian assessment of heart failure using explainable deep learning and novel multi-parameter polar images"],"prefix":"10.1016","volume":"248","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-5248-6327","authenticated-orcid":false,"given":"Mohanad","family":"Alkhodari","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0636-1646","authenticated-orcid":false,"given":"Ahsan H.","family":"Khandoker","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5457-6193","authenticated-orcid":false,"given":"Herbert F.","family":"Jelinek","sequence":"additional","affiliation":[]},{"given":"Angelos","family":"Karlas","sequence":"additional","affiliation":[]},{"given":"Stergios","family":"Soulaidopoulos","sequence":"additional","affiliation":[]},{"given":"Petros","family":"Arsenos","sequence":"additional","affiliation":[]},{"given":"Ioannis","family":"Doundoulakis","sequence":"additional","affiliation":[]},{"given":"Konstantinos A.","family":"Gatzoulis","sequence":"additional","affiliation":[]},{"given":"Konstantinos","family":"Tsioufis","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9932-9302","authenticated-orcid":false,"given":"Leontios J.","family":"Hadjileontiadis","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.cmpb.2024.108107_br0010","doi-asserted-by":"crossref","first-page":"646","DOI":"10.1161\/CIRCRESAHA.113.300268","article-title":"Epidemiology of heart failure","volume":"113","author":"Roger","year":"2013","journal-title":"Circ. Res."},{"key":"10.1016\/j.cmpb.2024.108107_br0020","doi-asserted-by":"crossref","first-page":"1202","DOI":"10.1161\/CIRCULATIONAHA.106.623199","article-title":"Navigating the crossroads of coronary artery disease and heart failure","volume":"114","author":"Gheorghiade","year":"2006","journal-title":"Circulation"},{"key":"10.1016\/j.cmpb.2024.108107_br0030","doi-asserted-by":"crossref","first-page":"1342","DOI":"10.1002\/ejhf.1858","article-title":"Epidemiology of heart failure","volume":"22","author":"Groenewegen","year":"2020","journal-title":"Eur. J. Heart Fail."},{"key":"10.1016\/j.cmpb.2024.108107_br0040","series-title":"The Atlas of Heart Disease and Stroke","author":"Mackay","year":"2004"},{"key":"10.1016\/j.cmpb.2024.108107_br0050","doi-asserted-by":"crossref","first-page":"736","DOI":"10.1016\/S0735-1097(03)00789-7","article-title":"The association of left ventricular ejection fraction, mortality, and cause of death in stable outpatients with heart failure","volume":"42","author":"Curtis","year":"2003","journal-title":"J. Am. Coll. Cardiol."},{"key":"10.1016\/j.cmpb.2024.108107_br0060","doi-asserted-by":"crossref","first-page":"3599","DOI":"10.1093\/eurheartj\/ehab368","volume":"42","author":"McDonagh","year":"2021","journal-title":"Eur. Heart J."},{"key":"10.1016\/j.cmpb.2024.108107_br0070","doi-asserted-by":"crossref","first-page":"11","DOI":"10.3904\/kjim.2018.428","article-title":"Update on heart failure management and future directions","volume":"34","author":"Choi","year":"2019","journal-title":"Korean J. Intern. Med."},{"key":"10.1016\/j.cmpb.2024.108107_br0080","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/1476-7120-5-34","article-title":"Role of echocardiography in diagnosis and risk stratification in heart failure with left ventricular systolic dysfunction","volume":"5","author":"Ciampi","year":"2007","journal-title":"Cardiovasc. Ultrasound"},{"key":"10.1016\/j.cmpb.2024.108107_br0090","doi-asserted-by":"crossref","first-page":"108","DOI":"10.15420\/ecr.2012.8.2.108","article-title":"Measuring left ventricular ejection fraction\u2013techniques and potential pitfalls","volume":"8","author":"Foley","year":"2012","journal-title":"Eur. Cardiol. Rev."},{"key":"10.1016\/j.cmpb.2024.108107_br0100","doi-asserted-by":"crossref","first-page":"258","DOI":"10.3389\/fpubh.2017.00258","article-title":"An overview of heart rate variability metrics and norms","volume":"5","author":"Shaffer","year":"2017","journal-title":"Front. Public Health"},{"key":"10.1016\/j.cmpb.2024.108107_br0110","doi-asserted-by":"crossref","first-page":"261","DOI":"10.1016\/j.hrthm.2007.10.030","article-title":"Non-Gaussian heart rate as an independent predictor of mortality in patients with chronic heart failure","volume":"5","author":"Kiyono","year":"2008","journal-title":"Heart Rhythm"},{"key":"10.1016\/j.cmpb.2024.108107_br0120","doi-asserted-by":"crossref","first-page":"689","DOI":"10.1093\/eurheartj\/ehn537","article-title":"Prediction of fatal or near-fatal cardiac arrhythmia events in patients with depressed left ventricular function after an acute myocardial infarction","volume":"30","author":"Huikuri","year":"2009","journal-title":"Eur. Heart J."},{"key":"10.1016\/j.cmpb.2024.108107_br0130","doi-asserted-by":"crossref","first-page":"16","DOI":"10.1007\/s10489-018-1179-1","article-title":"Deep convolutional neural network for the automated diagnosis of congestive heart failure using ECG signals","volume":"49","author":"Acharya","year":"2019","journal-title":"Appl. Intell."},{"key":"10.1016\/j.cmpb.2024.108107_br0140","doi-asserted-by":"crossref","first-page":"S375","DOI":"10.1016\/j.healun.2019.01.954","article-title":"Deep learning for diagnosing heart failure from ECG signals","volume":"38","author":"Kim","year":"2019","journal-title":"J. Heart Lung Transplant."},{"key":"10.1016\/j.cmpb.2024.108107_br0150","doi-asserted-by":"crossref","DOI":"10.1093\/ehjdh\/ztab081","article-title":"Deep learning detects heart failure with preserved ejection fraction using a baseline electrocardiogram","author":"Unterhuber","year":"2021","journal-title":"Eur. Heart J. Digit. Health"},{"key":"10.1016\/j.cmpb.2024.108107_br0160","doi-asserted-by":"crossref","first-page":"629","DOI":"10.4070\/kcj.2018.0446","article-title":"Development and validation of deep-learning algorithm for electrocardiography-based heart failure identification","volume":"49","author":"Kwon","year":"2019","journal-title":"Korean Circ. J."},{"key":"10.1016\/j.cmpb.2024.108107_br0170","doi-asserted-by":"crossref","first-page":"69559","DOI":"10.1109\/ACCESS.2019.2912226","article-title":"Deep ensemble detection of congestive heart failure using short-term RR intervals","volume":"7","author":"Wang","year":"2019","journal-title":"IEEE Access"},{"key":"10.1016\/j.cmpb.2024.108107_br0180","doi-asserted-by":"crossref","first-page":"1502","DOI":"10.3390\/s19071502","article-title":"Detection of congestive heart failure based on LSTM-based deep network via short-term RR intervals","volume":"19","author":"Wang","year":"2019","journal-title":"Sensors"},{"key":"10.1016\/j.cmpb.2024.108107_br0190","doi-asserted-by":"crossref","first-page":"361","DOI":"10.1093\/jamia\/ocw112","article-title":"Using recurrent neural network models for early detection of heart failure onset","volume":"24","author":"Choi","year":"2017","journal-title":"J. Am. Med. Inform. Assoc."},{"key":"10.1016\/j.cmpb.2024.108107_br0200","doi-asserted-by":"crossref","DOI":"10.1161\/CIRCOUTCOMES.118.005114","article-title":"Recurrent neural networks for early detection of heart failure from longitudinal electronic health record data: implications for temporal modeling with respect to time before diagnosis, data density, data quantity, and data type","volume":"12","author":"Chen","year":"2019","journal-title":"Circ. Cardiovasc. Qual. Outcomes"},{"key":"10.1016\/j.cmpb.2024.108107_br0210","doi-asserted-by":"crossref","first-page":"1604","DOI":"10.3389\/fcvm.2021.755968","article-title":"Deep learning predicts heart failure with preserved, mid-range, and reduced left ventricular ejection fraction from patient clinical profiles","volume":"8","author":"Alkhodari","year":"2021","journal-title":"Front. Cardiovasc. Med."},{"key":"10.1016\/j.cmpb.2024.108107_br0220","series-title":"2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)","first-page":"1","article-title":"Heart failure assessment using multiparameter polar representations and deep learning","author":"Alkhodari","year":"2023"},{"key":"10.1016\/j.cmpb.2024.108107_br0230","doi-asserted-by":"crossref","first-page":"79","DOI":"10.1016\/j.euje.2005.12.014","article-title":"Recommendations for chamber quantification","volume":"7","author":"Lang","year":"2006","journal-title":"Eur. J. Echocardiogr."},{"key":"10.1016\/j.cmpb.2024.108107_br0240","doi-asserted-by":"crossref","first-page":"511","DOI":"10.1016\/j.jchf.2016.03.021","article-title":"Left ventricular ejection fraction: what is \u201cnormal\u201d?","volume":"4","author":"Fonarow","year":"2016","journal-title":"JACC Heart Fail."},{"key":"10.1016\/j.cmpb.2024.108107_br0250","doi-asserted-by":"crossref","first-page":"502","DOI":"10.1016\/j.jchf.2016.03.003","article-title":"Prognosis of adults with borderline left ventricular ejection fraction","volume":"4","author":"Tsao","year":"2016","journal-title":"JACC Heart Fail."},{"key":"10.1016\/j.cmpb.2024.108107_br0260","series-title":"2010 Annual International Conference of the IEEE Engineering in Medicine and Biology","first-page":"6252","article-title":"The telemetric and Holter ECG warehouse initiative (THEW): a data repository for the design, implementation and validation of ECG-related technologies","author":"Couderc","year":"2010"},{"key":"10.1016\/j.cmpb.2024.108107_br0270","unstructured":"University of Rochester Medical Center. Telemetric and Holter ECG Warehouse."},{"key":"10.1016\/j.cmpb.2024.108107_br0280","doi-asserted-by":"crossref","first-page":"2940","DOI":"10.1093\/eurheartj\/ehz260","article-title":"Arrhythmic risk stratification in post-myocardial infarction patients with preserved ejection fraction: the PRESERVE EF study","volume":"40","author":"Gatzoulis","year":"2019","journal-title":"Eur. Heart J."},{"key":"10.1016\/j.cmpb.2024.108107_br0290","first-page":"361","article-title":"Post myocardial infarction risk stratification for sudden cardiac death in patients with preserved ejection fraction: PRESERVE-EF study design","volume":"55","author":"Gatzoulis","year":"2014","journal-title":"Hellenic J. Cardiol."},{"key":"10.1016\/j.cmpb.2024.108107_br0300","doi-asserted-by":"crossref","first-page":"3227","DOI":"10.1080\/03610928608829305","article-title":"Fitting linear regression models to censored data by least squares and maximum likelihood methods","volume":"15","author":"Chatterjee","year":"1986","journal-title":"Commun. Stat., Theory Methods"},{"key":"10.1016\/j.cmpb.2024.108107_br0310","doi-asserted-by":"crossref","DOI":"10.1016\/j.cmpb.2021.106292","article-title":"A SAS macro for modelling periodic data using cosinor analysis","volume":"209","author":"Doyle","year":"2021","journal-title":"Comput. Methods Programs Biomed."},{"key":"10.1016\/j.cmpb.2024.108107_br0320","doi-asserted-by":"crossref","first-page":"151","DOI":"10.1111\/j.1542-474X.1996.tb00275.x","article-title":"Heart rate variability: standards of measurement, physiological interpretation, and clinical use: task force of the European society of cardiology and the North American society for pacing and electrophysiology","volume":"1","author":"Malik","year":"1996","journal-title":"Ann. Noninvasive Electrocardiol."},{"key":"10.1016\/j.cmpb.2024.108107_br0330","series-title":"Self-Organized Biological Dynamics and Nonlinear Control","first-page":"66","article-title":"Fractal mechanisms in neuronal control: human heartbeat and gait dynamics in health and disease","author":"Peng","year":"2000"},{"key":"10.1016\/j.cmpb.2024.108107_br0340","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevE.71.021906","article-title":"Multiscale entropy analysis of biological signals","volume":"71","author":"Costa","year":"2005","journal-title":"Phys. Rev. E"},{"key":"10.1016\/j.cmpb.2024.108107_br0350","doi-asserted-by":"crossref","first-page":"255","DOI":"10.3389\/fphys.2017.00255","article-title":"Heart rate fragmentation: a new approach to the analysis of cardiac interbeat interval dynamics","volume":"8","author":"Costa","year":"2017","journal-title":"Front. Physiol."},{"key":"10.1016\/j.cmpb.2024.108107_br0360","doi-asserted-by":"crossref","DOI":"10.1016\/j.cmpb.2019.105050","article-title":"Artefact detection and quality assessment of ambulatory ECG signals","volume":"182","author":"Moeyersons","year":"2019","journal-title":"Comput. Methods Programs Biomed."},{"key":"10.1016\/j.cmpb.2024.108107_br0370","series-title":"Hyperparameter Optimization","author":"Feurer","year":"2019"},{"key":"10.1016\/j.cmpb.2024.108107_br0380","doi-asserted-by":"crossref","first-page":"1091","DOI":"10.3233\/IDA-184311","article-title":"An attention-gated convolutional neural network for sentence classification","volume":"23","author":"Liu","year":"2019","journal-title":"Intell. Data Anal."},{"key":"10.1016\/j.cmpb.2024.108107_br0390","doi-asserted-by":"crossref","first-page":"805","DOI":"10.1007\/s10895-005-2990-8","article-title":"Polar plot representation for frequency-domain analysis of fluorescence lifetimes","volume":"15","author":"Redford","year":"2005","journal-title":"J. Fluoresc."},{"key":"10.1016\/j.cmpb.2024.108107_br0400","doi-asserted-by":"crossref","first-page":"323","DOI":"10.1016\/j.ins.2012.07.049","article-title":"Local Shannon entropy measure with statistical tests for image randomness","volume":"222","author":"Wu","year":"2013","journal-title":"Inf. Sci."},{"key":"10.1016\/j.cmpb.2024.108107_br0410","doi-asserted-by":"crossref","first-page":"191","DOI":"10.1016\/j.cmpb.2015.08.007","article-title":"Generalized discriminant analysis for congestive heart failure risk assessment based on long-term heart rate variability","volume":"122","author":"Shahbazi","year":"2015","journal-title":"Comput. Methods Programs Biomed."},{"key":"10.1016\/j.cmpb.2024.108107_br0420","doi-asserted-by":"crossref","first-page":"54","DOI":"10.1016\/j.cmpb.2016.03.020","article-title":"Congestive heart failure detection using random forest classifier","volume":"130","author":"Masetic","year":"2016","journal-title":"Comput. Methods Programs Biomed."},{"key":"10.1016\/j.cmpb.2024.108107_br0430","doi-asserted-by":"crossref","first-page":"863","DOI":"10.1161\/CIRCULATIONAHA.107.760405","article-title":"Parasympathetic nervous system and heart failure: pathophysiology and potential implications for therapy","volume":"118","author":"Olshansky","year":"2008","journal-title":"Circulation"},{"key":"10.1016\/j.cmpb.2024.108107_br0440","doi-asserted-by":"crossref","first-page":"795","DOI":"10.3390\/e20100795","article-title":"The interaction analysis between the sympathetic and parasympathetic systems in CHF by using transfer entropy method","volume":"20","author":"Luo","year":"2018","journal-title":"Entropy"},{"key":"10.1016\/j.cmpb.2024.108107_br0450","doi-asserted-by":"crossref","first-page":"746","DOI":"10.1109\/JBHI.2020.3002336","article-title":"Estimating left ventricle ejection fraction levels using circadian heart rate variability features and support vector regression models","volume":"25","author":"Alkhodari","year":"2020","journal-title":"IEEE J. Biomed. Health Inform."},{"key":"10.1016\/j.cmpb.2024.108107_br0460","doi-asserted-by":"crossref","first-page":"1255","DOI":"10.1113\/expphysiol.2010.056259","article-title":"Low-frequency power of heart rate variability is not a measure of cardiac sympathetic tone but may be a measure of modulation of cardiac autonomic outflows by baroreflexes","volume":"96","author":"Goldstein","year":"2011","journal-title":"Exp. Physiol."},{"key":"10.1016\/j.cmpb.2024.108107_br0470","doi-asserted-by":"crossref","first-page":"610","DOI":"10.1016\/0002-9149(92)90200-I","article-title":"Circadian rhythm of heart rate variability in survivors of cardiac arrest","volume":"70","author":"Huikuri","year":"1992","journal-title":"Am. J. Cardiol."},{"key":"10.1016\/j.cmpb.2024.108107_br0480","doi-asserted-by":"crossref","first-page":"144","DOI":"10.3810\/hp.2010.06.308","article-title":"When and why do heart attacks occur? Cardiovascular triggers and their potential role","volume":"38","author":"Schwartz","year":"2010","journal-title":"Hosp. Pract."},{"key":"10.1016\/j.cmpb.2024.108107_br0490","first-page":"495","article-title":"Heart failure with mid-range ejection fraction: a distinctive subtype or a transitional stage?","volume":"8","author":"Zhou","year":"2021","journal-title":"Front. Cardiovasc. Med."},{"key":"10.1016\/j.cmpb.2024.108107_br0500","doi-asserted-by":"crossref","DOI":"10.1155\/2020\/4281243","article-title":"Detecting congestive heart failure by extracting multimodal features and employing machine learning techniques","volume":"2020","author":"Hussain","year":"2020","journal-title":"BioMed Res. Int."},{"key":"10.1016\/j.cmpb.2024.108107_br0510","doi-asserted-by":"crossref","first-page":"8845","DOI":"10.1038\/s41598-020-64083-4","article-title":"Detecting cardiac pathologies via machine learning on heart-rate variability time series and related markers","volume":"10","author":"Agliari","year":"2020","journal-title":"Sci. Rep."},{"key":"10.1016\/j.cmpb.2024.108107_br0520","article-title":"HRV based feature selection for congestive heart failure and normal sinus rhythm for meticulous presaging of heart disease using machine learning","volume":"24","author":"Aggarwal","year":"2022","journal-title":"Meas.: Sens."},{"key":"10.1016\/j.cmpb.2024.108107_br0530","series-title":"Prediction of the left ventricular ejection fraction by machine learning algorithms based on heart rate variability parameters in patients with ischemic heart disease","author":"Tian","year":"2022"},{"key":"10.1016\/j.cmpb.2024.108107_br0540","doi-asserted-by":"crossref","DOI":"10.1161\/CIRCHEARTFAILURE.115.002826","article-title":"Heart failure and midrange ejection fraction: implications of recovered ejection fraction for exercise tolerance and outcomes","volume":"9","author":"Nadruz","year":"2016","journal-title":"Circ. Heart Fail."},{"key":"10.1016\/j.cmpb.2024.108107_br0550","doi-asserted-by":"crossref","first-page":"233","DOI":"10.1016\/j.jchf.2017.11.011","article-title":"Impact of body mass index on heart failure by race\/ethnicity from the Get With The Guidelines\u2013Heart Failure (GWTG\u2013HF) Registry","volume":"6","author":"Powell-Wiley","year":"2018","journal-title":"JACC Heart Fail."},{"key":"10.1016\/j.cmpb.2024.108107_br0560","doi-asserted-by":"crossref","first-page":"e99","DOI":"10.5001\/omj.2020.17","article-title":"Mortality and morbidity in HFrEF, HFmrEF, and HFpEF patients with diabetes in the Middle East","volume":"35","author":"Al-Jarallah","year":"2020","journal-title":"Oman Med. J."},{"key":"10.1016\/j.cmpb.2024.108107_br0570","doi-asserted-by":"crossref","first-page":"1598","DOI":"10.1161\/CIRCRESAHA.119.313572","article-title":"Heart failure with preserved ejection fraction in perspective","volume":"124","author":"Pfeffer","year":"2019","journal-title":"Circ. Res."},{"key":"10.1016\/j.cmpb.2024.108107_br0580","doi-asserted-by":"crossref","first-page":"1102","DOI":"10.1016\/j.jacc.2020.06.069","article-title":"Pulmonary hypertension in HFpEF and HFrEF: JACC review topic of the week","volume":"76","author":"Guazzi","year":"2020","journal-title":"J. Am. Coll. Cardiol."},{"key":"10.1016\/j.cmpb.2024.108107_br0590","doi-asserted-by":"crossref","first-page":"E682","DOI":"10.1016\/S0735-1097(13)60682-8","article-title":"Association between angina and outcomes in heart failure patients with preserved ejection fraction: analysis from the duke databank for cardiovascular disease","volume":"61","author":"Mentz","year":"2013","journal-title":"J. Am. Coll. Cardiol."},{"key":"10.1016\/j.cmpb.2024.108107_br0600","doi-asserted-by":"crossref","first-page":"3426","DOI":"10.1093\/eurheartj\/ehu342","article-title":"Relationship between angina pectoris and outcomes in patients with heart failure and reduced ejection fraction: an analysis of the controlled rosuvastatin multinational trial in heart failure (corona)","volume":"35","author":"Badar","year":"2014","journal-title":"Eur. Heart J."},{"key":"10.1016\/j.cmpb.2024.108107_br0610","first-page":"14","article-title":"Dystrophic cardiomyopathy: complex pathobiological processes to generate clinical phenotype","volume":"4","author":"Tsuda","year":"2017","journal-title":"J. Cardiovasc. Dev. Dis."}],"container-title":["Computer Methods and Programs in Biomedicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0169260724001032?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0169260724001032?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,3,30]],"date-time":"2024-03-30T02:50:13Z","timestamp":1711767013000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0169260724001032"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,5]]},"references-count":61,"alternative-id":["S0169260724001032"],"URL":"https:\/\/doi.org\/10.1016\/j.cmpb.2024.108107","relation":{},"ISSN":["0169-2607"],"issn-type":[{"value":"0169-2607","type":"print"}],"subject":[],"published":{"date-parts":[[2024,5]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Circadian assessment of heart failure using explainable deep learning and novel multi-parameter polar images","name":"articletitle","label":"Article Title"},{"value":"Computer Methods and Programs in Biomedicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cmpb.2024.108107","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 The Author(s). Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"108107"}}