{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,6]],"date-time":"2024-10-06T01:17:33Z","timestamp":1728177453417},"reference-count":40,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T00:00:00Z","timestamp":1709251200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,1,24]],"date-time":"2024-01-24T00:00:00Z","timestamp":1706054400000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100004488","name":"Croatian Science Foundation","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100004488","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012285","name":"Flanders Department of Economy Science and Innovation","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100012285","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.es","clinicalkey.com.au","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computer Methods and Programs in Biomedicine"],"published-print":{"date-parts":[[2024,3]]},"DOI":"10.1016\/j.cmpb.2024.108044","type":"journal-article","created":{"date-parts":[[2024,1,24]],"date-time":"2024-01-24T17:43:07Z","timestamp":1706118187000},"page":"108044","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":5,"special_numbering":"C","title":["Understanding skin color bias in deep learning-based skin lesion segmentation"],"prefix":"10.1016","volume":"245","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-4294-0781","authenticated-orcid":false,"given":"Marin","family":"Ben\u010devi\u0107","sequence":"first","affiliation":[]},{"given":"Marija","family":"Habijan","sequence":"additional","affiliation":[]},{"given":"Irena","family":"Gali\u0107","sequence":"additional","affiliation":[]},{"given":"Danilo","family":"Babin","sequence":"additional","affiliation":[]},{"given":"Aleksandra","family":"Pi\u017eurica","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.cmpb.2024.108044_br0010","author":"Bevan"},{"key":"10.1016\/j.cmpb.2024.108044_br0020","series-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2020, vol. 12266","first-page":"320","article-title":"Fairness of classifiers across skin tones in dermatology","author":"Kinyanjui","year":"2020"},{"key":"10.1016\/j.cmpb.2024.108044_br0030","doi-asserted-by":"crossref","first-page":"78339","DOI":"10.1109\/ACCESS.2023.3289320","article-title":"Assessing bias in skin lesion classifiers with contemporary deep learning and post-hoc explainability techniques","volume":"11","author":"Corbin","year":"2023","journal-title":"IEEE Access"},{"key":"10.1016\/j.cmpb.2024.108044_br0040","doi-asserted-by":"crossref","DOI":"10.1126\/sciadv.abq6147","article-title":"Disparities in dermatology AI performance on a diverse, curated clinical image set","volume":"8","author":"Daneshjou","year":"2022","journal-title":"Sci. Adv."},{"key":"10.1016\/j.cmpb.2024.108044_br0050","author":"Galdran"},{"key":"10.1016\/j.cmpb.2024.108044_br0060","series-title":"2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)","first-page":"5437","article-title":"PH2 - a dermoscopic image database for research and benchmarking","author":"Mendonca","year":"2013"},{"key":"10.1016\/j.cmpb.2024.108044_br0070","doi-asserted-by":"crossref","first-page":"1873","DOI":"10.1109\/TBME.2013.2244596","article-title":"MSIM: multistage illumination modeling of dermatological photographs for illumination-corrected skin lesion analysis","volume":"60","author":"Glaister","year":"2013","journal-title":"IEEE Trans. Biomed. Eng."},{"key":"10.1016\/j.cmpb.2024.108044_br0080","series-title":"Color Medical Image Analysis, vol. 6","first-page":"63","article-title":"A color and texture based hierarchical K-NN approach to the classification of non-melanoma skin lesions","author":"Ballerini","year":"2013"},{"key":"10.1016\/j.cmpb.2024.108044_br0090","series-title":"Proceedings of the 1st Conference on Fairness, Accountability and Transparency","first-page":"77","article-title":"Gender shades: intersectional accuracy disparities in commercial gender classification","volume":"vol. 81","author":"Buolamwini","year":"2018"},{"key":"10.1016\/j.cmpb.2024.108044_br0100","author":"Merler"},{"key":"10.1016\/j.cmpb.2024.108044_br0110","doi-asserted-by":"crossref","first-page":"869","DOI":"10.1001\/archderm.1988.01670060015008","article-title":"The validity and practicality of sun-reactive skin types I through VI","volume":"124","author":"Fitzpatrick","year":"1988","journal-title":"Arch. Dermatol."},{"key":"10.1016\/j.cmpb.2024.108044_br0120","doi-asserted-by":"crossref","first-page":"615","DOI":"10.1097\/01.scs.0000171847.58031.9e","article-title":"International anthropometric study of facial morphology in various ethnic groups\/races","volume":"16","author":"Farkas","year":"2005","journal-title":"J. Craniofac. Surg."},{"key":"10.1016\/j.cmpb.2024.108044_br0130","series-title":"2021 IEEE\/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","first-page":"1820","article-title":"Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick 17k dataset","author":"Groh","year":"2021"},{"key":"10.1016\/j.cmpb.2024.108044_br0140","series-title":"The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","article-title":"Learning not to learn: training deep neural networks with biased data","author":"Kim","year":"2019"},{"key":"10.1016\/j.cmpb.2024.108044_br0150","series-title":"Computer Vision \u2013 ECCV 2018 Workshops, vol. 11129","first-page":"556","article-title":"Turning a blind eye: explicit removal of biases and variation from deep neural network embeddings","author":"Alvi","year":"2019"},{"key":"10.1016\/j.cmpb.2024.108044_br0160","first-page":"374","article-title":"EdgeMixup: embarrassingly simple data alteration to improve lyme disease lesion segmentation and diagnosis fairness","author":"Yuan","year":"2023"},{"key":"10.1016\/j.cmpb.2024.108044_br0170","doi-asserted-by":"crossref","DOI":"10.3389\/fcvm.2022.859310","article-title":"Fairness in cardiac magnetic resonance imaging: assessing sex and racial bias in deep learning-based segmentation","volume":"9","author":"Puyol-Ant\u00f3n","year":"2022","journal-title":"Front. Cardiovasc. Med."},{"key":"10.1016\/j.cmpb.2024.108044_br0180","series-title":"Statistical Atlases and Computational Models of the Heart","first-page":"233","article-title":"A systematic study of race and sex bias in CNN-based cardiac MR segmentation","volume":"vol. 13593","author":"Lee","year":"2022"},{"key":"10.1016\/j.cmpb.2024.108044_br0190","first-page":"215","article-title":"An investigation into the impact of deep learning model choice on sex and race bias in cardiac MR segmentation","author":"Lee","year":"2023"},{"key":"10.1016\/j.cmpb.2024.108044_br0200","first-page":"13","article-title":"A study of demographic bias in CNN-based brain MR segmentation","author":"Ioannou","year":"2022"},{"key":"10.1016\/j.cmpb.2024.108044_br0210","author":"Tian"},{"key":"10.1016\/j.cmpb.2024.108044_br0220","author":"Kinyanjui"},{"key":"10.1016\/j.cmpb.2024.108044_br0230","first-page":"246","article-title":"Revisiting skin tone fairness in dermatological lesion classification","author":"Kalb","year":"2023"},{"key":"10.1016\/j.cmpb.2024.108044_br0240","author":"Codella"},{"key":"10.1016\/j.cmpb.2024.108044_br0250","series-title":"2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS)","first-page":"558","article-title":"Doubleu-net: a deep convolutional neural network for medical image segmentation","author":"Jha","year":"2020"},{"key":"10.1016\/j.cmpb.2024.108044_br0260","doi-asserted-by":"crossref","first-page":"133365","DOI":"10.1109\/ACCESS.2021.3116265","article-title":"Training on polar image transformations improves biomedical image segmentation","volume":"9","author":"Ben\u010devi\u0107","year":"2021","journal-title":"IEEE Access"},{"key":"10.1016\/j.cmpb.2024.108044_br0270","doi-asserted-by":"crossref","DOI":"10.3390\/s23020633","article-title":"Segment-then-segment: context-preserving crop-based segmentation for large biomedical images","volume":"23","author":"Ben\u010devi\u0107","year":"2023","journal-title":"Sensors"},{"key":"10.1016\/j.cmpb.2024.108044_br0280","series-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2021","first-page":"206","article-title":"Boundary-aware transformers for skin lesion segmentation","author":"Wang","year":"2021"},{"key":"10.1016\/j.cmpb.2024.108044_br0290","series-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2019","first-page":"337","article-title":"Image-and-spatial transformer networks for structure-guided image registration","author":"Lee","year":"2019"},{"key":"10.1016\/j.cmpb.2024.108044_br0300","series-title":"IEEE Transactions on Emerging Topics in Computational Intelligence","first-page":"1","article-title":"Transattunet: multi-level attention-guided u-net with transformer for medical image segmentation","author":"Chen","year":"2023"},{"key":"10.1016\/j.cmpb.2024.108044_br0310","series-title":"Proceedings of the IEEE\/CVF Winter Conference on Applications of Computer Vision","first-page":"6202","article-title":"Hiformer: hierarchical multi-scale representations using transformers for medical image segmentation","author":"Heidari","year":"2023"},{"key":"10.1016\/j.cmpb.2024.108044_br0320","author":"Groh"},{"key":"10.1016\/j.cmpb.2024.108044_br0330","series-title":"2009 IEEE Conference on Computer Vision and Pattern Recognition","first-page":"248","article-title":"ImageNet: a large-scale hierarchical image database","author":"Deng","year":"2009"},{"key":"10.1016\/j.cmpb.2024.108044_br0340","doi-asserted-by":"crossref","DOI":"10.1016\/j.dib.2020.106221","article-title":"Barros, PAD-UFES-20: a skin lesion dataset composed of patient data and clinical images collected from smartphones","volume":"32","author":"Pacheco","year":"2020","journal-title":"Data Brief"},{"key":"10.1016\/j.cmpb.2024.108044_br0350","series-title":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"770","article-title":"Deep residual learning for image recognition","author":"He","year":"2016"},{"key":"10.1016\/j.cmpb.2024.108044_br0360","doi-asserted-by":"crossref","first-page":"533","DOI":"10.1016\/S0010-4825(97)00020-6","article-title":"Dullrazor\u00ae: a software approach to hair removal from images","volume":"27","author":"Lee","year":"1997","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.cmpb.2024.108044_br0370","author":"Satopa"},{"key":"10.1016\/j.cmpb.2024.108044_br0380","doi-asserted-by":"crossref","DOI":"10.1038\/sdata.2018.161","article-title":"The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions","volume":"5","author":"Tschandl","year":"2018","journal-title":"Sci. Data"},{"key":"10.1016\/j.cmpb.2024.108044_br0390","doi-asserted-by":"crossref","first-page":"111","DOI":"10.1016\/j.compbiomed.2018.11.010","article-title":"Domain-specific classification-pretrained fully convolutional network encoders for skin lesion segmentation","volume":"104","author":"Tschandl","year":"2019","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.cmpb.2024.108044_br0400","author":"Schrouff"}],"container-title":["Computer Methods and Programs in Biomedicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0169260724000403?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0169260724000403?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,2,19]],"date-time":"2024-02-19T21:43:20Z","timestamp":1708379000000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0169260724000403"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,3]]},"references-count":40,"alternative-id":["S0169260724000403"],"URL":"https:\/\/doi.org\/10.1016\/j.cmpb.2024.108044","relation":{},"ISSN":["0169-2607"],"issn-type":[{"value":"0169-2607","type":"print"}],"subject":[],"published":{"date-parts":[[2024,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Understanding skin color bias in deep learning-based skin lesion segmentation","name":"articletitle","label":"Article Title"},{"value":"Computer Methods and Programs in Biomedicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cmpb.2024.108044","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 The Author(s). Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"108044"}}