{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,22]],"date-time":"2024-08-22T22:54:48Z","timestamp":1724367288633},"reference-count":37,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T00:00:00Z","timestamp":1709251200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,1,9]],"date-time":"2024-01-09T00:00:00Z","timestamp":1704758400000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100013915","name":"EPSRC Centre for Doctoral Training in Smart Medical Imaging","doi-asserted-by":"publisher","award":["EP\/W004593\/1"],"id":[{"id":"10.13039\/501100013915","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100010269","name":"Wellcome Trust","doi-asserted-by":"publisher","award":["174ISSFPP"],"id":[{"id":"10.13039\/100010269","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100000266","name":"Engineering and Physical Sciences Research Council","doi-asserted-by":"publisher","award":["EP\/V029983\/1"],"id":[{"id":"10.13039\/501100000266","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.es","clinicalkey.com.au","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computer Methods and Programs in Biomedicine"],"published-print":{"date-parts":[[2024,3]]},"DOI":"10.1016\/j.cmpb.2024.108014","type":"journal-article","created":{"date-parts":[[2024,1,9]],"date-time":"2024-01-09T12:11:49Z","timestamp":1704802309000},"page":"108014","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":1,"special_numbering":"C","title":["Development and application of an optimised Bayesian shrinkage prior for spectroscopic biomedical diagnostics"],"prefix":"10.1016","volume":"245","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-1968-919X","authenticated-orcid":false,"given":"Hin On","family":"Chu","sequence":"first","affiliation":[]},{"given":"Emma","family":"Buchan","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3427-0936","authenticated-orcid":false,"given":"David","family":"Smith","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1014-4724","authenticated-orcid":false,"given":"Pola","family":"Goldberg Oppenheimer","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.cmpb.2024.108014_bib0001","doi-asserted-by":"crossref","first-page":"1227","DOI":"10.3390\/cells11071227","article-title":"Raman spectroscopy as a neuromonitoring tool in traumatic brain injury: a systematic review and clinical perspectives","volume":"11","author":"Stevens","year":"2022","journal-title":"Cells"},{"key":"10.1016\/j.cmpb.2024.108014_bib0002","doi-asserted-by":"crossref","first-page":"610","DOI":"10.1038\/s41551-019-0510-4","article-title":"Rapid optofluidic detection of biomarkers for traumatic brain injury via surface-enhanced Raman spectroscopy","volume":"4","author":"Rickard","year":"2020","journal-title":"Nat. Biomed. Eng."},{"key":"10.1016\/j.cmpb.2024.108014_bib0003","doi-asserted-by":"crossref","DOI":"10.1016\/j.aca.2021.339074","article-title":"Spectroscopic molecular-fingerprint profiling of saliva","volume":"1185","author":"Buchan","year":"2021","journal-title":"Anal. Chim. Acta"},{"issue":"11","key":"10.1016\/j.cmpb.2024.108014_bib0004","doi-asserted-by":"crossref","first-page":"6249","DOI":"10.1364\/BOE.399473","article-title":"Spectroscopic detection of traumatic brain injury severity and biochemistry from the retina","volume":"11","author":"Logan","year":"2020","journal-title":"Biomed. Opt. Express"},{"key":"10.1016\/j.cmpb.2024.108014_bib0005","doi-asserted-by":"crossref","first-page":"4709","DOI":"10.1016\/j.bpj.2009.03.021","article-title":"Quantitative surface-enhanced raman for gene expression estimation","volume":"96","author":"Sun","year":"2009","journal-title":"Biophys. J."},{"key":"10.1016\/j.cmpb.2024.108014_bib0006","series-title":"Encyclopedia of Spectroscopy and Spectrometry","first-page":"383","article-title":"Surface-enhanced Raman scattering (SERS) biochemical applications","author":"Uskokovi\u0107-Markovi\u0107","year":"2017"},{"key":"10.1016\/j.cmpb.2024.108014_bib0007","doi-asserted-by":"crossref","first-page":"6517","DOI":"10.1039\/C9AN01144G","article-title":"Feature engineering applied to intraoperative in vivo Raman spectroscopy sheds light on molecular processes in brain cancer: a retrospective study of 65 patients","volume":"144","author":"Lemoine","year":"2019","journal-title":"Analyst"},{"key":"10.1016\/j.cmpb.2024.108014_bib0008","first-page":"11","article-title":"Raman spectroscopy and artificial intelligence to predict the bayesian probability of breast cancer","author":"Kothari","year":"2021","journal-title":"Sci. Rep."},{"key":"10.1016\/j.cmpb.2024.108014_bib0009","doi-asserted-by":"crossref","first-page":"2179","DOI":"10.3390\/cancers13092179","article-title":"Surface-enhanced Raman scattering (SERS) spectroscopy for sensing and characterization of exosomes in cancer diagnosis","volume":"13","author":"Guerrini","year":"2021","journal-title":"Cancers"},{"key":"10.1016\/j.cmpb.2024.108014_bib0010","series-title":"Proceedings of the Optical Biopsy XI","article-title":"Resonance Raman spectroscopy for human cancer detection of key molecules with clinical diagnosis","volume":"8577","author":"Zhou","year":"2013"},{"key":"10.1016\/j.cmpb.2024.108014_bib0011","doi-asserted-by":"crossref","first-page":"1731","DOI":"10.1080\/00032719.2021.2024218","article-title":"Classification of tuberculosis by surface-enhanced Raman spectroscopy (SERS) with principal component analysis (pca) and partial least squares\u2013discriminant analysis (PLS-DA)","volume":"55","author":"Shahzad","year":"2022","journal-title":"Anal. Lett."},{"key":"10.1016\/j.cmpb.2024.108014_bib0012","doi-asserted-by":"crossref","DOI":"10.1016\/j.pdpdt.2020.101963","article-title":"Cost effective and efficient screening of tuberculosis disease with Raman spectroscopy and machine learning algorithms","volume":"32","author":"Ullah","year":"2020","journal-title":"Photodiagn. Photodyn. Ther."},{"key":"10.1016\/j.cmpb.2024.108014_bib0013","doi-asserted-by":"crossref","DOI":"10.1016\/j.pdpdt.2021.102689","article-title":"Raman spectroscopy may allow rapid noninvasive screening of keratitis and conjunctivitis","volume":"37","author":"Wu","year":"2022","journal-title":"Photodiagn. Photodyn. Ther."},{"key":"10.1016\/j.cmpb.2024.108014_bib0014","doi-asserted-by":"crossref","DOI":"10.1016\/j.pdpdt.2020.101932","article-title":"Rapid, non-invasive screening of keratitis based on Raman spectroscopy combined with multivariate statistical analysis","volume":"31","author":"Xie","year":"2020","journal-title":"Photodiagn. Photodyn. Ther"},{"key":"10.1016\/j.cmpb.2024.108014_bib0015","first-page":"210","article-title":"Rapid and non-invasive discrimination of acute leukemia bone marrow supernatants by Raman spectroscopy and multivariate statistical analysis","author":"Liang","year":"2022","journal-title":"J. Pharm. Biomed. Anal."},{"key":"10.1016\/j.cmpb.2024.108014_bib0016","doi-asserted-by":"crossref","first-page":"399","DOI":"10.1076\/jcen.23.3.399.1181","article-title":"Statistical power and effect sizes of clinical neuropsychology research","volume":"23","author":"Bezeau","year":"2001","journal-title":"J. Clin. Exp. Neuropsychol"},{"key":"10.1016\/j.cmpb.2024.108014_bib0017","first-page":"11","article-title":"Sample size and subject to item ratio in principal components analysis","volume":"9","author":"Osborne","year":"2019","journal-title":"Pract. Assess. Res. Eval."},{"key":"10.1016\/j.cmpb.2024.108014_bib0018","series-title":"A Step-By-Step Approach to Using SAS for Factor Analysis and Structural Equation Modeling","author":"Hatcher","year":"2013"},{"key":"10.1016\/j.cmpb.2024.108014_bib0019","doi-asserted-by":"crossref","first-page":"173","DOI":"10.1515\/eko-2016-0014","article-title":"Impact of sample size on principal component analysis ordination of an environmental data set: effects on eigenstructure","volume":"35","author":"Shaukat","year":"2016","journal-title":"Ekol. Bratisl."},{"key":"10.1016\/j.cmpb.2024.108014_bib0020","doi-asserted-by":"crossref","first-page":"167","DOI":"10.1016\/j.jocm.2018.07.002","article-title":"Is your dataset big enough? Sample size requirements when using artificial neural networks for discrete choice analysis","volume":"28","author":"Alwosheel","year":"2018","journal-title":"J. Choice Model."},{"key":"10.1016\/j.cmpb.2024.108014_bib0021","doi-asserted-by":"crossref","DOI":"10.1016\/j.cmpb.2020.105911","article-title":"Bayesian parameter estimation in the oral minimal model of glucose dynamics from non-fasting conditions using a new function of glucose appearance","volume":"200","author":"Eichenlaub","year":"2021","journal-title":"Comput. Methods Programs Biomed."},{"key":"10.1016\/j.cmpb.2024.108014_bib0022","doi-asserted-by":"crossref","DOI":"10.1016\/j.cmpb.2023.107405","article-title":"A Bayesian network model for predicting cardiovascular risk","volume":"231","author":"Ordovas","year":"2023","journal-title":"Comput. Methods Programs Biomed."},{"key":"10.1016\/j.cmpb.2024.108014_bib0023","doi-asserted-by":"crossref","first-page":"1076","DOI":"10.1016\/j.ijrobp.2021.12.011","article-title":"Understanding the differences between bayesian and frequentist statistics","volume":"112","author":"Fornacon-Wood","year":"2022","journal-title":"Int. J. Radiat. Oncol."},{"key":"10.1016\/j.cmpb.2024.108014_bib0024","first-page":"370","article-title":"LII. An essay towards solving a problem in the doctrine of chances. By the late Rev. Mr. Bayes, F. R. S. communicated by Mr. Price, in a Letter to John Canton, A. M. F. R. S","volume":"53","author":"Bayes","year":"1763","journal-title":"Philos. Trans. R. Soc. Lond."},{"key":"10.1016\/j.cmpb.2024.108014_bib0025","doi-asserted-by":"crossref","first-page":"1733","DOI":"10.1002\/aic.10446","article-title":"Kinetic parameter estimation for a multiresponse nonlinear reaction model","volume":"51","author":"Routray","year":"2005","journal-title":"AIChE J."},{"key":"10.1016\/j.cmpb.2024.108014_bib0026","doi-asserted-by":"crossref","first-page":"13","DOI":"10.1002\/jbio.200810024","article-title":"Disease recognition by infrared and Raman spectroscopy","volume":"2","author":"Krafft","year":"2009","journal-title":"J. Biophotonics"},{"key":"10.1016\/j.cmpb.2024.108014_bib0027","doi-asserted-by":"crossref","DOI":"10.1098\/rsif.2018.0572","article-title":"Simultaneous parameter estimation and variable selection via the logit-normal continuous analogue of the spike-and-slab prior","volume":"16","author":"Thomson","year":"2019","journal-title":"J. R. Soc. Interface"},{"key":"10.1016\/j.cmpb.2024.108014_bib0028","doi-asserted-by":"crossref","DOI":"10.1063\/5.0004608","article-title":"The ORCA quantum chemistry program package","volume":"152","author":"Neese","year":"2020","journal-title":"J. Chem. Phys."},{"key":"10.1016\/j.cmpb.2024.108014_bib0029","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/1758-2946-4-17","article-title":"Avogadro: an advanced semantic chemical editor, visualization, and analysis platform","volume":"4","author":"Hanwell","year":"2012","journal-title":"J. Cheminform."},{"key":"10.1016\/j.cmpb.2024.108014_bib0030","unstructured":"Stan Development Team {RStan}: The {R} Interface to {Stan} 2020."},{"key":"10.1016\/j.cmpb.2024.108014_bib0031","first-page":"1593","article-title":"The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo","volume":"15","author":"Hoffman","year":"2014","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.cmpb.2024.108014_bib0032","unstructured":"GitHub - Willthomson1\/RS-Interface-Code: Code for J Roy Soc Interface Paper Available online: https:\/\/github.com\/willthomson1\/RS-Interface-code (accessed on 15 May 2020)."},{"key":"10.1016\/j.cmpb.2024.108014_bib0033","doi-asserted-by":"crossref","first-page":"10812","DOI":"10.1038\/s41598-019-47205-5","article-title":"Development of the self optimising kohonen index network (SKiNET) for Raman spectroscopy based detection of anatomical eye tissue","volume":"9","author":"Banbury","year":"2019","journal-title":"Sci. Rep."},{"key":"10.1016\/j.cmpb.2024.108014_bib0034","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1177\/00368504211029777","article-title":"Machine learning on small size samples: a synthetic knowledge synthesis","volume":"105","author":"Kokol","year":"2022","journal-title":"Sci. Prog."},{"key":"10.1016\/j.cmpb.2024.108014_bib0035","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2022.118152","article-title":"Clustered Bayesian classification for within-class separation","volume":"208","author":"Sa\u011flam","year":"2022","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.cmpb.2024.108014_bib0036","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s12874-022-01577-x","article-title":"Methodological conduct of prognostic prediction models developed using machine learning in oncology: a systematic review","volume":"22","author":"Dhiman","year":"2022","journal-title":"BMC Med. Res. Methodol."},{"key":"10.1016\/j.cmpb.2024.108014_bib0037","doi-asserted-by":"crossref","first-page":"2545","DOI":"10.1177\/09622802211046388","article-title":"Developing clinical prediction models when adhering to minimum sample size recommendations: the importance of quantifying bootstrap variability in tuning parameters and predictive performance","volume":"30","author":"Martin","year":"2021","journal-title":"Stat. Methods Med. Res."}],"container-title":["Computer Methods and Programs in Biomedicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0169260724000099?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0169260724000099?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,1,28]],"date-time":"2024-01-28T02:50:31Z","timestamp":1706410231000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0169260724000099"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,3]]},"references-count":37,"alternative-id":["S0169260724000099"],"URL":"https:\/\/doi.org\/10.1016\/j.cmpb.2024.108014","relation":{},"ISSN":["0169-2607"],"issn-type":[{"value":"0169-2607","type":"print"}],"subject":[],"published":{"date-parts":[[2024,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Development and application of an optimised Bayesian shrinkage prior for spectroscopic biomedical diagnostics","name":"articletitle","label":"Article Title"},{"value":"Computer Methods and Programs in Biomedicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cmpb.2024.108014","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 The Authors. Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"108014"}}