{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T19:09:58Z","timestamp":1725995398555},"reference-count":35,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T00:00:00Z","timestamp":1709251200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,1,12]],"date-time":"2024-01-12T00:00:00Z","timestamp":1705017600000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100006442","name":"Det Sundhedsvidenskabelige Fakultet, K\u00f8benhavns Universitet","doi-asserted-by":"publisher","award":["R186-2015-2138"],"id":[{"id":"10.13039\/501100006442","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100003554","name":"Lundbeck Foundation","doi-asserted-by":"publisher","award":["R380-2021-1269"],"id":[{"id":"10.13039\/501100003554","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100005275","name":"Region Hovedstaden","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100005275","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.es","clinicalkey.com.au","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computer Methods and Programs in Biomedicine"],"published-print":{"date-parts":[[2024,3]]},"DOI":"10.1016\/j.cmpb.2024.108008","type":"journal-article","created":{"date-parts":[[2024,1,10]],"date-time":"2024-01-10T02:16:16Z","timestamp":1704852976000},"page":"108008","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":2,"special_numbering":"C","title":["End-to-end volumetric segmentation of white matter hyperintensities using deep learning"],"prefix":"10.1016","volume":"245","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-6911-3586","authenticated-orcid":false,"given":"Sadaf","family":"Farkhani","sequence":"first","affiliation":[]},{"given":"Naiara","family":"Demnitz","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4458-6475","authenticated-orcid":false,"given":"Carl-Johan","family":"Boraxbekk","sequence":"additional","affiliation":[]},{"given":"Henrik","family":"Lundell","sequence":"additional","affiliation":[]},{"given":"Hartwig Roman","family":"Siebner","sequence":"additional","affiliation":[]},{"given":"Esben Thade","family":"Petersen","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8606-7641","authenticated-orcid":false,"given":"Kristoffer Hougaard","family":"Madsen","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.cmpb.2024.108008_bib0001","doi-asserted-by":"crossref","first-page":"799","DOI":"10.3109\/00207454.2014.884087","article-title":"Cerebral white matter hyperintensities (WMH): an analysis of cerebrovascular risk factors in Lebanon","volume":"124","author":"Gebeily","year":"2014","journal-title":"Int. J. Neurosci."},{"key":"10.1016\/j.cmpb.2024.108008_bib0002","doi-asserted-by":"crossref","first-page":"292","DOI":"10.1007\/s11936-013-0292-z","article-title":"White matter disease as a biomarker for long-term cerebrovascular disease and dementia","volume":"16","author":"Chutinet","year":"2014","journal-title":"Curr. Treat. Options Cardiovasc. Med."},{"key":"10.1016\/j.cmpb.2024.108008_bib0003","doi-asserted-by":"crossref","DOI":"10.3389\/fnagi.2022.915009","article-title":"Automatic segmentation of white matter hyperintensities in routine clinical brain MRI by 2D VB-Net: a large-scale study","volume":"14","author":"Zhu","year":"2022","journal-title":"Front. Aging Neurosci."},{"key":"10.1016\/j.cmpb.2024.108008_bib0004","doi-asserted-by":"crossref","first-page":"376","DOI":"10.1038\/s41398-021-01495-4","article-title":"Cerebral small vessel disease burden and longitudinal cognitive decline from age 73 to 82: the Lothian Birth Cohort 1936","volume":"11","author":"Hamilton","year":"2021","journal-title":"Transl. Psychiatry"},{"key":"10.1016\/j.cmpb.2024.108008_bib0005","doi-asserted-by":"crossref","first-page":"2074","DOI":"10.1007\/s00247-021-05177-7","article-title":"The augmented radiologist: artificial intelligence in the practice of radiology","volume":"52","author":"Sorantin","year":"2022","journal-title":"Pediatr Radiol."},{"key":"10.1016\/j.cmpb.2024.108008_bib0006","doi-asserted-by":"crossref","DOI":"10.1016\/j.nicl.2019.101870","article-title":"Cross-sectional and longitudinal associations between total and regional white matter hyperintensity volume and cognitive and motor function in Parkinson's disease","volume":"23","author":"Pozorski","year":"2019","journal-title":"Neuroimage Clin."},{"key":"10.1016\/j.cmpb.2024.108008_bib0007","series-title":"Bayesian Inference for Structured Additive Regression Models for Large-Scale Problems with Applications to Medical Imaging","author":"Schmidt","year":"2017"},{"key":"10.1016\/j.cmpb.2024.108008_bib0008","doi-asserted-by":"crossref","DOI":"10.1016\/j.neuroimage.2019.116056","article-title":"Automated lesion segmentation with BIANCA: impact of population-level features, classification algorithm and locally adaptive thresholding","volume":"202","author":"Sundaresan","year":"2019","journal-title":"Neuroimage"},{"key":"10.1016\/j.cmpb.2024.108008_bib0009","doi-asserted-by":"crossref","first-page":"1481","DOI":"10.1002\/hbm.25739","article-title":"Performance of three freely available methods for extracting white matter hyperintensities: freeSurfer, UBO Detector, and BIANCA","volume":"43","author":"Hotz","year":"2022","journal-title":"Hum. Brain Mapp."},{"key":"10.1016\/j.cmpb.2024.108008_bib0010","doi-asserted-by":"crossref","first-page":"2370","DOI":"10.1177\/0271678X211002279","article-title":"Deep white matter hyperintensity is associated with the dilation of perivascular space","volume":"41","author":"Huang","year":"2021","journal-title":"J. Cereb. Blood Flow Metab."},{"key":"10.1016\/j.cmpb.2024.108008_bib0011","doi-asserted-by":"crossref","DOI":"10.3389\/fnagi.2021.672535","article-title":"Frontal white matter hyperintensities and executive functioning performance in older adults","volume":"13","author":"Boutzoukas","year":"2021","journal-title":"Front. Aging Neurosci."},{"key":"10.1016\/j.cmpb.2024.108008_bib0012","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2021.102184","article-title":"Triplanar ensemble U-Net model for white matter hyperintensities segmentation on MR images","volume":"73","author":"Sundaresan","year":"2021","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.cmpb.2024.108008_bib0013","first-page":"10","article-title":"Comparing 3D, 2.5D, and 2D Approaches to brain image auto-segmentation","author":"Avesta","year":"2023","journal-title":"Bioengineering (Basel)"},{"key":"10.1016\/j.cmpb.2024.108008_bib0014","doi-asserted-by":"crossref","first-page":"76","DOI":"10.1016\/j.neunet.2020.03.007","article-title":"AdaEn-Net: an ensemble of adaptive 2D-3D fully convolutional networks for medical image segmentation","volume":"126","author":"Baldeon Calisto","year":"2020","journal-title":"Neural. Netw."},{"key":"10.1016\/j.cmpb.2024.108008_bib0015","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2023.109432","article-title":"3D medical image segmentation using parallel transformers","volume":"138","author":"Yan","year":"2023","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.cmpb.2024.108008_bib0016","series-title":"An Image is Worth 16\u00a0\u00d7\u00a016 Words: Transformers for Image Recognition at Scale","author":"Dosovitskiy","year":"2021"},{"key":"10.1016\/j.cmpb.2024.108008_bib0017","series-title":"2022 IEEE ANDESCON","first-page":"1","article-title":"Automatic brain white matter hyperintensities segmentation with swin U-Net","author":"Viteri","year":"2022"},{"key":"10.1016\/j.cmpb.2024.108008_bib0018","series-title":"Proceedings of the IEEE\/CVF Winter Conference on Applications of Computer Vision","article-title":"UNETR: transformers for 3D medical image segmentation","author":"Hatamizadeh","year":"2022"},{"key":"10.1016\/j.cmpb.2024.108008_bib0019","doi-asserted-by":"crossref","unstructured":"Tsuchida A., Boutinaud P., Verrecchia V., Tzourio C., Debette S., Joliot M. Early detection of white matter hyperintensities using SHIVA-WMH detector. bioRxiv. 2023. p. 2023.02.03.526961. 10.1101\/2023.02.03.526961.","DOI":"10.1101\/2023.02.03.526961"},{"key":"10.1016\/j.cmpb.2024.108008_bib0020","doi-asserted-by":"crossref","DOI":"10.1016\/j.exger.2020.110939","article-title":"The influence of prolonged strength training upon muscle and fat in healthy and chronically diseased older adults","volume":"136","author":"Gylling","year":"2020","journal-title":"Exp. Gerontol."},{"key":"10.1016\/j.cmpb.2024.108008_bib0021","series-title":"Advances in Neural Information Processing Systems","first-page":"5998","article-title":"Attention is all you need","author":"Vaswani","year":"2017"},{"key":"10.1016\/j.cmpb.2024.108008_bib0022","series-title":"Medical Image Computing and Computer-Assisted Intervention\u2014MICCAI","article-title":"3D U-Net: learning dense volumetric segmentation from sparse annotation","author":"\u00c7i\u00e7ek","year":"2016"},{"key":"10.1016\/j.cmpb.2024.108008_bib0023","series-title":"Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA","article-title":"V-Net: fully convolutional neural networks for volumetric medical image segmentation","author":"Milletari","year":"2016"},{"key":"10.1016\/j.cmpb.2024.108008_bib0024","series-title":"Decoupled Weight Decay Regularization","author":"Loshchilov","year":"2018"},{"key":"10.1016\/j.cmpb.2024.108008_bib0025","doi-asserted-by":"crossref","first-page":"555","DOI":"10.1162\/coli.07-034-R2","article-title":"Inter-coder agreement for computational linguistics","volume":"34","author":"Artstein","year":"2008","journal-title":"Comput. Linguist. Assoc. Comput. Linguist."},{"key":"10.1016\/j.cmpb.2024.108008_bib0026","series-title":"Bildverarbeitung F\u00fcr Die Medizin","article-title":"nnU-Net: self-adapting framework for U-Net-based medical image segmentation","author":"Isensee","year":"2019"},{"issue":"2","key":"10.1016\/j.cmpb.2024.108008_bib0027","doi-asserted-by":"crossref","first-page":"203","DOI":"10.1038\/s41592-020-01008-z","article-title":"nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation","volume":"18","author":"Isensee","year":"2021","journal-title":"Nat. Methods"},{"key":"10.1016\/j.cmpb.2024.108008_bib0028","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2021.104730","article-title":"Deep learning for colon cancer histopathological images analysis","volume":"136","author":"Ben Hamida","year":"2021","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.cmpb.2024.108008_bib0029","first-page":"894","article-title":"The averaged Hausdorff distances in multi-objective optimization: a review","volume":"7","author":"Bogoya","year":"2019","journal-title":"Sci. China Ser. A Math."},{"key":"10.1016\/j.cmpb.2024.108008_bib0030","doi-asserted-by":"crossref","DOI":"10.1016\/j.cmpb.2021.106539","article-title":"Domain- and task-specific transfer learning for medical segmentation tasks","volume":"214","author":"Zoetmulder","year":"2022","journal-title":"Comput. Methods Programs Biomed."},{"key":"10.1016\/j.cmpb.2024.108008_bib0031","doi-asserted-by":"crossref","first-page":"1974","DOI":"10.1093\/brain\/awab132","article-title":"Deep grey matter injury in multiple sclerosis: a NAIMS consensus statement","volume":"144","author":"Ontaneda","year":"2021","journal-title":"Brain"},{"key":"10.1016\/j.cmpb.2024.108008_bib0032","unstructured":"Lu Y., Perer A. An Interactive Interpretability System for Breast Cancer Screening with Deep Learning. arXiv [eess.IV]. 2022. Available: http:\/\/arxiv.org\/abs\/2210.08979."},{"key":"10.1016\/j.cmpb.2024.108008_bib0033","doi-asserted-by":"crossref","unstructured":"Tang Y., Yang D., Li W., Roth H., Landman B., Xu D., et\u00a0al. Self-supervised pre-training of swin transformers for 3D medical image analysis. 2022. Available: https:\/\/ieeexplore.ieee.org\/document\/9879123.","DOI":"10.1109\/CVPR52688.2022.02007"},{"key":"10.1016\/j.cmpb.2024.108008_bib0034","series-title":"Expert Systems with Applications","article-title":"Post-hoc explanation of black-box classifiers using confident itemsets","author":"Moradi","year":"2021"},{"key":"10.1016\/j.cmpb.2024.108008_bib0035","series-title":"36th Conference on Neural Information Processing Systems (NeurIPS)","article-title":"Training language models to follow instructions with human feedback","author":"Ouyang","year":"2022"}],"container-title":["Computer Methods and Programs in Biomedicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0169260724000038?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0169260724000038?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,2,23]],"date-time":"2024-02-23T21:10:24Z","timestamp":1708722624000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0169260724000038"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,3]]},"references-count":35,"alternative-id":["S0169260724000038"],"URL":"https:\/\/doi.org\/10.1016\/j.cmpb.2024.108008","relation":{},"ISSN":["0169-2607"],"issn-type":[{"value":"0169-2607","type":"print"}],"subject":[],"published":{"date-parts":[[2024,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"End-to-end volumetric segmentation of white matter hyperintensities using deep learning","name":"articletitle","label":"Article Title"},{"value":"Computer Methods and Programs in Biomedicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cmpb.2024.108008","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 The Authors. Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"108008"}}