{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,9]],"date-time":"2024-09-09T21:13:18Z","timestamp":1725916398097},"reference-count":45,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T00:00:00Z","timestamp":1709251200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T00:00:00Z","timestamp":1709251200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T00:00:00Z","timestamp":1709251200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T00:00:00Z","timestamp":1709251200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T00:00:00Z","timestamp":1709251200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T00:00:00Z","timestamp":1709251200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["20233040\u20131","82272941"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.es","clinicalkey.com.au","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computer Methods and Programs in Biomedicine"],"published-print":{"date-parts":[[2024,3]]},"DOI":"10.1016\/j.cmpb.2024.108007","type":"journal-article","created":{"date-parts":[[2024,1,5]],"date-time":"2024-01-05T03:52:43Z","timestamp":1704426763000},"page":"108007","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":1,"special_numbering":"C","title":["Pseudo-medical image-guided technology based on 'CBCT-only' mode in esophageal cancer radiotherapy"],"prefix":"10.1016","volume":"245","author":[{"given":"Hongfei","family":"Sun","sequence":"first","affiliation":[]},{"given":"Zhi","family":"Yang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6225-8910","authenticated-orcid":false,"given":"Jiarui","family":"Zhu","sequence":"additional","affiliation":[]},{"given":"Jie","family":"Li","sequence":"additional","affiliation":[]},{"given":"Jie","family":"Gong","sequence":"additional","affiliation":[]},{"given":"Liting","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Zhongfei","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Yutian","family":"Yin","sequence":"additional","affiliation":[]},{"given":"Ge","family":"Ren","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6934-0108","authenticated-orcid":false,"given":"Jing","family":"Cai","sequence":"additional","affiliation":[]},{"given":"Lina","family":"Zhao","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"Pt 2","key":"10.1016\/j.cmpb.2024.108007_bib0001","doi-asserted-by":"crossref","first-page":"873","DOI":"10.1016\/j.semcancer.2022.01.007","article-title":"The development and progress of nanomedicine for esophageal cancer diagnosis and treatment","volume":"86","author":"Li","year":"2022","journal-title":"Semin. Cancer Biol."},{"key":"10.1016\/j.cmpb.2024.108007_bib0002","doi-asserted-by":"crossref","first-page":"27","DOI":"10.1016\/j.radonc.2021.09.004","article-title":"Current status and application of proton therapy for esophageal cancer","volume":"164","author":"Wang","year":"2021","journal-title":"Radiother. Oncol."},{"issue":"3","key":"10.1016\/j.cmpb.2024.108007_bib0003","doi-asserted-by":"crossref","first-page":"209","DOI":"10.3322\/caac.21660","article-title":"Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]","volume":"71","author":"Sung","year":"2021","journal-title":"CA Cancer J. Clin."},{"issue":"6","key":"10.1016\/j.cmpb.2024.108007_bib0004","doi-asserted-by":"crossref","first-page":"1010","DOI":"10.1007\/s12328-020-01237-x","article-title":"Epidemiology of esophageal cancer: update in global trends, etiology and risk factors[J]","volume":"13","author":"Uhlenhopp","year":"2020","journal-title":"Clin. J. Gastroenterol."},{"key":"10.1016\/j.cmpb.2024.108007_bib0005","doi-asserted-by":"crossref","DOI":"10.1016\/j.radonc.2023.109463","article-title":"High versus standard radiation dose of definitive concurrent chemoradiotherapy for esophageal cancer: A systematic review and meta-analysis of randomized clinical trials","volume":"180","author":"Wang","year":"2023","journal-title":"Radiother. Oncol."},{"key":"10.1016\/j.cmpb.2024.108007_bib0006","doi-asserted-by":"crossref","first-page":"101","DOI":"10.1016\/j.radonc.2021.11.024","article-title":"CT-guided versus MR-guided radiotherapy: Impact on gastrointestinal sparing in adrenal stereotactic body radiotherapy","volume":"166","author":"Rodriguez","year":"2022","journal-title":"Radiother. Oncol."},{"issue":"5","key":"10.1016\/j.cmpb.2024.108007_bib0007","article-title":"Positron Emission Tomography (PET)\/Computed Tomography (CT) Imaging in Radiation Therapy Treatment Planning: A Review of PET Imaging Tracers and Methods to Incorporate PET\/CT","volume":"8","author":"Trotter","year":"2023","journal-title":"Adv. Radiat. Oncol."},{"key":"10.1016\/j.cmpb.2024.108007_bib0008","doi-asserted-by":"crossref","DOI":"10.1016\/j.ejrad.2022.110422","article-title":"Eliminating CT radiation for clinical PET examination using deep learning","volume":"154","author":"Li","year":"2022","journal-title":"Eur. J. Radiol."},{"key":"10.1016\/j.cmpb.2024.108007_bib0009","doi-asserted-by":"crossref","DOI":"10.1016\/j.cmpb.2022.106932","article-title":"Research on new treatment mode of radiotherapy based on pseudo-medical images","volume":"221","author":"Sun","year":"2022","journal-title":"Comput. Methods Programs Biomed."},{"issue":"10","key":"10.1016\/j.cmpb.2024.108007_bib0010","doi-asserted-by":"crossref","DOI":"10.1088\/1361-6560\/acc921","article-title":"Deep learning based synthetic CT from cone beam CT generation for abdominal paediatric radiotherapy","volume":"68","author":"Szmul","year":"2023","journal-title":"Phys. Med. Biol."},{"key":"10.1016\/j.cmpb.2024.108007_bib0011","doi-asserted-by":"crossref","first-page":"31","DOI":"10.1016\/j.radonc.2022.08.028","article-title":"A deep learning approach to generate synthetic CT in low field MR-guided radiotherapy for lung cases","volume":"176","author":"Lenkowicz","year":"2022","journal-title":"Radiother. Oncol."},{"key":"10.1016\/j.cmpb.2024.108007_bib0012","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2022.105277","article-title":"Unsupervised pseudo CT generation using heterogenous multicentric CT\/MR images and CycleGAN: Dosimetric assessment for 3D conformal radiotherapy[J]","volume":"143","author":"Jabbarpour","year":"2022","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.cmpb.2024.108007_bib0013","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2023.106889","article-title":"Synthetic CT generation from CBCT using double-chain-CycleGAN","volume":"161","author":"Deng","year":"2023","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.cmpb.2024.108007_bib0014","doi-asserted-by":"crossref","DOI":"10.1016\/j.cmpb.2023.107393","article-title":"New technique and application of truncated CBCT processing in adaptive radiotherapy for breast cancer","volume":"231","author":"Xie","year":"2023","journal-title":"Comput. Methods Programs Biomed."},{"key":"10.1016\/j.cmpb.2024.108007_bib0015","article-title":"Breath-hold CBCT-guided CBCT-to-CT Synthesis via Multimodal Unsupervised Representation Disentanglement Learning [published online ahead of print, 2023 Feb 22]","author":"Zhang","year":"2023","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"7","key":"10.1016\/j.cmpb.2024.108007_bib0016","doi-asserted-by":"crossref","first-page":"3142","DOI":"10.1002\/mp.13583","article-title":"Projection-domain scatter correction for cone beam computed tomography using a residual convolutional neural network","volume":"46","author":"Nomura","year":"2019","journal-title":"Med. Phys."},{"issue":"11","key":"10.1016\/j.cmpb.2024.108007_bib0017","doi-asserted-by":"crossref","first-page":"7112","DOI":"10.1002\/mp.15282","article-title":"Image-based shading correction for narrow-FOV truncated pelvic CBCT with deep convolutional neural networks and transfer learning","volume":"48","author":"Rossi","year":"2021","journal-title":"Med. Phys."},{"issue":"5","key":"10.1016\/j.cmpb.2024.108007_bib0018","doi-asserted-by":"crossref","first-page":"3263","DOI":"10.1002\/mp.15585","article-title":"Head and neck synthetic CT generated from ultra-low-dose cone-beam CT following Image Gently Protocol using deep neural network","volume":"49","author":"Yuan","year":"2022","journal-title":"Med. Phys."},{"key":"10.1016\/j.cmpb.2024.108007_bib0019","article-title":"A more effective CT synthesizer using transformers for cone-beam CT-guided adaptive radiotherapy","volume":"12","author":"Chen","year":"2022","journal-title":"Front. Oncol."},{"issue":"14","key":"10.1016\/j.cmpb.2024.108007_bib0020","doi-asserted-by":"crossref","DOI":"10.1088\/1361-6560\/ab2770","article-title":"A preliminary study of using a deep convolution neural network to generate synthesized CT images based on CBCT for adaptive radiotherapy of nasopharyngeal carcinoma","volume":"64","author":"Li","year":"2019","journal-title":"Phys. Med. Biol."},{"issue":"3","key":"10.1016\/j.cmpb.2024.108007_bib0021","doi-asserted-by":"crossref","first-page":"998","DOI":"10.1002\/mp.13963","article-title":"Visual enhancement of Cone-beam CT by use of CycleGAN","volume":"47","author":"Kida","year":"2020","journal-title":"Med. Phys."},{"issue":"8","key":"10.1016\/j.cmpb.2024.108007_bib0022","doi-asserted-by":"crossref","first-page":"5317","DOI":"10.1002\/mp.15684","article-title":"Synthetic CT generation based on CBCT using respath-cycleGAN","volume":"49","author":"Deng","year":"2022","journal-title":"Med. Phys."},{"issue":"2","key":"10.1016\/j.cmpb.2024.108007_bib0023","doi-asserted-by":"crossref","first-page":"879","DOI":"10.1002\/mp.16017","article-title":"Streaking artifact reduction for CBCT-based synthetic CT generation in adaptive radiotherapy","volume":"50","author":"Gao","year":"2023","journal-title":"Med. Phys."},{"issue":"5","key":"10.1016\/j.cmpb.2024.108007_bib0024","doi-asserted-by":"crossref","first-page":"485","DOI":"10.1007\/s00066-022-02039-5","article-title":"Improving CBCT image quality to the CT level using RegGAN in esophageal cancer adaptive radiotherapy","volume":"199","author":"Wang","year":"2023","journal-title":"Strahlenther. Onkol."},{"key":"10.1016\/j.cmpb.2024.108007_bib0025","doi-asserted-by":"crossref","DOI":"10.1016\/j.cmpb.2020.105764","article-title":"A novel supervised learning method to generate CT images for attenuation correction in delayed pet scans","volume":"197","author":"Rao","year":"2020","journal-title":"Comput. Methods Programs Biomed."},{"key":"10.1016\/j.cmpb.2024.108007_bib0026","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2022.103853","article-title":"Generating CT images in delayed PET scans using a multi-resolution registration convolutional neural network","volume":"78","author":"Zhai","year":"2022","journal-title":"Biomed. Signal. Proces."},{"issue":"1","key":"10.1016\/j.cmpb.2024.108007_bib0027","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1186\/s13550-020-00644-y","article-title":"Independent attenuation correction of whole body [18F]FDG-PET using a deep learning approach with Generative Adversarial Networks","volume":"10","author":"Armanious","year":"2020","journal-title":"EJNMMI Res."},{"issue":"11","key":"10.1016\/j.cmpb.2024.108007_bib0028","doi-asserted-by":"crossref","first-page":"6003","DOI":"10.1364\/BOE.467683","article-title":"TCGAN: a transformer-enhanced GAN for PET synthetic CT","volume":"13","author":"Li","year":"2022","journal-title":"Biomed. Opt. Express"},{"issue":"2","key":"10.1016\/j.cmpb.2024.108007_bib0029","doi-asserted-by":"crossref","first-page":"604","DOI":"10.1007\/s12350-022-03010-8","article-title":"Automated nonlinear registration of coronary PET to CT angiography using pseudo-CT generated from PET with generative adversarial networks","volume":"30","author":"Singh","year":"2023","journal-title":"J. Nucl. Cardiol."},{"key":"10.1016\/j.cmpb.2024.108007_bib0030","series-title":"Medical Image Computing and Computer Assisted Intervention\u2013MICCAI 2019: 22nd International Conference","first-page":"723","article-title":"A novel loss function incorporating imaging acquisition physics for PET attenuation map generation using deep learning","author":"Shi","year":"2019"},{"issue":"21","key":"10.1016\/j.cmpb.2024.108007_bib0031","doi-asserted-by":"crossref","DOI":"10.1088\/1361-6560\/ab4eb7","article-title":"Synthetic CT generation from non-attenuation corrected PET images for whole-body PET imaging","volume":"64","author":"Dong","year":"2019","journal-title":"Phys. Med. Biol."},{"key":"10.1016\/j.cmpb.2024.108007_bib0032","first-page":"758","article-title":"Mapping in Cycles: Dual-Domain PET-CT Synthesis Framework with Cycle-Consistent Constraints. Medical Image Computing and Computer","author":"Zhang","year":"2022","journal-title":"Assisted Intervention\u2013MICCAI 2022: 25th International Conference, Singapore. Springer Nature Switzerland"},{"key":"10.1016\/j.cmpb.2024.108007_bib0033","doi-asserted-by":"crossref","first-page":"186","DOI":"10.1016\/j.engappai.2018.11.013","article-title":"Cross-modality synthesis from CT to PET using FCN and GAN networks for improved automated lesion detection","volume":"78","author":"Ben-Cohen","year":"2019","journal-title":"Eng. Appl. Artif. Intel."},{"key":"10.1016\/j.cmpb.2024.108007_bib0034","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2022.105277","article-title":"Unsupervised pseudo CT generation using heterogenous multicentric CT\/MR images and CycleGAN: Dosimetric assessment for 3D conformal radiotherapy[J]","volume":"143","author":"Jabbarpour","year":"2022","journal-title":"Comput. Biol. Med."},{"issue":"3","key":"10.1016\/j.cmpb.2024.108007_bib0035","doi-asserted-by":"crossref","DOI":"10.1088\/1361-6560\/ac4123","article-title":"Synthesis of pseudo-CT images from pelvic MRI images based on an MD-CycleGAN model for radiotherapy","volume":"67","author":"Sun","year":"2022","journal-title":"Phys. Med. Biol."},{"issue":"1","key":"10.1016\/j.cmpb.2024.108007_bib0036","doi-asserted-by":"crossref","first-page":"145","DOI":"10.1109\/TMI.2021.3107013","article-title":"Bidirectional Mapping Generative Adversarial Networks for Brain MR to PET Synthesis","volume":"41","author":"Hu","year":"2022","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"4","key":"10.1016\/j.cmpb.2024.108007_bib0037","doi-asserted-by":"crossref","first-page":"1972","DOI":"10.1109\/TNNLS.2021.3105725","article-title":"AttentionGAN: Unpaired Image-to-Image Translation Using Attention-Guided Generative Adversarial Networks","volume":"34","author":"Tang","year":"2023","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.cmpb.2024.108007_bib0038","first-page":"546","article-title":"Chest CBCT-based synthetic CT using cycle-consistent adversarial network with histogram matching","volume":"11596","author":"Qiu","year":"2021","journal-title":"Medical Imaging 2021"},{"issue":"12","key":"10.1016\/j.cmpb.2024.108007_bib0039","doi-asserted-by":"crossref","first-page":"2720","DOI":"10.1109\/TBME.2018.2814538","article-title":"Medical image synthesis with deep convolutional adversarial networks[J]","volume":"65","author":"Nie","year":"2018","journal-title":"IEEE Trans. Biomed. Eng."},{"key":"10.1016\/j.cmpb.2024.108007_bib0040","article-title":"Multimodality MRI synchronous construction based deep learning framework for MRI-guided radiotherapy synthetic CT generation","author":"Zhou","year":"2023162","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.cmpb.2024.108007_bib0041","article-title":"CT synthesis from multi-sequence MRI using adaptive fusion network","author":"Li","year":"2023157","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.cmpb.2024.108007_bib0042","doi-asserted-by":"crossref","first-page":"e14004","DOI":"10.1002\/acm2.14004","article-title":"Improving synthetic CT accuracy by combining the benefits of multiple normalized preprocesses","author":"Cao","year":"2023","journal-title":"J. Appl. Clin. Med. Phys."},{"issue":"2","key":"10.1016\/j.cmpb.2024.108007_bib0043","doi-asserted-by":"crossref","first-page":"136","DOI":"10.1002\/acm2.12816","article-title":"A technique to generate synthetic CT from MRI for abdominal radiotherapy","volume":"21","author":"Hsu","year":"2020","journal-title":"J. Appl. Clin. Med. Phys."},{"issue":"2","key":"10.1016\/j.cmpb.2024.108007_bib0044","doi-asserted-by":"crossref","first-page":"329","DOI":"10.1016\/j.ijrobp.2019.06.2542","article-title":"Quality Assurance of Dose-Escalated Radiation Therapy in a Randomized Trial for Locally Advanced Oesophageal cancer","volume":"105","author":"Boustani","year":"2019","journal-title":"Int. J. Radiat. Oncol. Biol. Phys."},{"issue":"5","key":"10.1016\/j.cmpb.2024.108007_bib0045","doi-asserted-by":"crossref","first-page":"05TR01","DOI":"10.1088\/1361-6560\/aaaca4","article-title":"MRI-only treatment planning: benefits and challenges","volume":"63","author":"Owrangi","year":"2018","journal-title":"Phys. Med. Biol."}],"container-title":["Computer Methods and Programs in Biomedicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0169260724000026?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0169260724000026?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,2,19]],"date-time":"2024-02-19T21:42:02Z","timestamp":1708378922000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0169260724000026"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,3]]},"references-count":45,"alternative-id":["S0169260724000026"],"URL":"https:\/\/doi.org\/10.1016\/j.cmpb.2024.108007","relation":{},"ISSN":["0169-2607"],"issn-type":[{"value":"0169-2607","type":"print"}],"subject":[],"published":{"date-parts":[[2024,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Pseudo-medical image-guided technology based on 'CBCT-only' mode in esophageal cancer radiotherapy","name":"articletitle","label":"Article Title"},{"value":"Computer Methods and Programs in Biomedicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cmpb.2024.108007","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"108007"}}