{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,2]],"date-time":"2024-09-02T10:33:21Z","timestamp":1725273201524},"reference-count":67,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/100009108","name":"Shandong University","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100009108","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100014103","name":"Key Technology Research and Development Program of Shandong Province","doi-asserted-by":"publisher","award":["2020CXGC010901","2021SFGC0504"],"id":[{"id":"10.13039\/100014103","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["2021GXRC046","81573829"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100007129","name":"Natural Science Foundation of Shandong Province","doi-asserted-by":"publisher","award":["ZR2021MF079"],"id":[{"id":"10.13039\/501100007129","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.es","clinicalkey.com.au","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computer Methods and Programs in Biomedicine"],"published-print":{"date-parts":[[2024,1]]},"DOI":"10.1016\/j.cmpb.2023.107923","type":"journal-article","created":{"date-parts":[[2023,11,15]],"date-time":"2023-11-15T23:56:39Z","timestamp":1700092599000},"page":"107923","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":1,"special_numbering":"C","title":["SFTNet: A microexpression-based method for depression detection"],"prefix":"10.1016","volume":"243","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-5125-281X","authenticated-orcid":false,"given":"Xingyun","family":"Li","sequence":"first","affiliation":[]},{"given":"Xinyu","family":"Yi","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0368-9651","authenticated-orcid":false,"given":"Jiayu","family":"Ye","sequence":"additional","affiliation":[]},{"given":"Yunshao","family":"Zheng","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8159-7739","authenticated-orcid":false,"given":"Qingxiang","family":"Wang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"11","key":"10.1016\/j.cmpb.2023.107923_br0010","doi-asserted-by":"crossref","first-page":"e442","DOI":"10.1371\/journal.pmed.0030442","article-title":"Projections of global mortality and burden of disease from 2002 to 2030","volume":"3","author":"Mathers","year":"2006","journal-title":"PLoS Med."},{"key":"10.1016\/j.cmpb.2023.107923_br0020","article-title":"Various forms of depression","author":"Benazzi","year":"2022","journal-title":"Dialogues Clin. Neurosci."},{"key":"10.1016\/j.cmpb.2023.107923_br0030","series-title":"Assessment of Depression","first-page":"143","article-title":"The Hamilton rating scale for depression","author":"Hamilton","year":"1986"},{"issue":"1","key":"10.1016\/j.cmpb.2023.107923_br0040","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.comppsych.2012.06.006","article-title":"The diagnosis of depression: current and emerging methods","volume":"54","author":"Smith","year":"2013","journal-title":"Compr. Psych."},{"key":"10.1016\/j.cmpb.2023.107923_br0050","series-title":"2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG)","first-page":"1","article-title":"Social risk and depression: evidence from manual and automatic facial expression analysis","author":"Girard","year":"2013"},{"key":"10.1016\/j.cmpb.2023.107923_br0060","series-title":"Non-verbal Communication in Depression","author":"Heiner","year":"2007"},{"key":"10.1016\/j.cmpb.2023.107923_br0070","series-title":"2013 Humaine Association Conference on Affective Computing and Intelligent Interaction","first-page":"147","article-title":"Automatic nonverbal behavior indicators of depression and ptsd: exploring gender differences","author":"Stratou","year":"2013"},{"key":"10.1016\/j.cmpb.2023.107923_br0080","series-title":"2015 International Conference on Affective Computing and Intelligent Interaction (ACII)","first-page":"539","article-title":"Towards an affective interface for assessment of psychological distress","author":"Lucas","year":"2015"},{"key":"10.1016\/j.cmpb.2023.107923_br0090","article-title":"A method for diagnosing depression: facial expression mimicry is evaluated by facial expression recognition","author":"Fu","year":"2022","journal-title":"J. Affect. Disord."},{"issue":"4","key":"10.1016\/j.cmpb.2023.107923_br0100","doi-asserted-by":"crossref","first-page":"849","DOI":"10.1017\/S0033291700041349","article-title":"Voice pitch measurements in schizophrenia and depression","volume":"11","author":"Leff","year":"1981","journal-title":"Psychol. Med."},{"issue":"1","key":"10.1016\/j.cmpb.2023.107923_br0110","doi-asserted-by":"crossref","first-page":"30","DOI":"10.1016\/j.bandc.2004.05.003","article-title":"Voice acoustical measurement of the severity of major depression","volume":"56","author":"Cannizzaro","year":"2004","journal-title":"Brain Cogn."},{"key":"10.1016\/j.cmpb.2023.107923_br0120","series-title":"2019 IEEE International Conference on Data Science and Advanced Analytics (DSAA)","first-page":"612","article-title":"Detection model of depression based on eye movement trajectory","author":"Yuan","year":"2019"},{"key":"10.1016\/j.cmpb.2023.107923_br0130","doi-asserted-by":"crossref","first-page":"165","DOI":"10.1016\/j.neucom.2020.10.015","article-title":"Automatic depression recognition using cnn with attention mechanism from videos","volume":"422","author":"He","year":"2021","journal-title":"Neurocomputing"},{"key":"10.1016\/j.cmpb.2023.107923_br0140","series-title":"Interspeech, vol. 2022","first-page":"3338","article-title":"A step towards preserving speakers' identity while detecting depression via speaker disentanglement","author":"Ravi","year":"2022"},{"key":"10.1016\/j.cmpb.2023.107923_br0150","author":"Wang"},{"key":"10.1016\/j.cmpb.2023.107923_br0160","doi-asserted-by":"crossref","first-page":"566","DOI":"10.1109\/TNSRE.2021.3059429","article-title":"Enhancing eeg-based classification of depression patients using spatial information","volume":"29","author":"Jiang","year":"2021","journal-title":"IEEE Trans. Neural Syst. Rehabil. Eng."},{"key":"10.1016\/j.cmpb.2023.107923_br0170","doi-asserted-by":"crossref","first-page":"127","DOI":"10.1016\/j.inffus.2020.01.008","article-title":"Feature-level fusion approaches based on multimodal eeg data for depression recognition","volume":"59","author":"Cai","year":"2020","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.cmpb.2023.107923_br0180","doi-asserted-by":"crossref","first-page":"103","DOI":"10.1016\/j.cmpb.2018.04.012","article-title":"Automated eeg-based screening of depression using deep convolutional neural network","volume":"161","author":"Rajendra Acharya","year":"2018","journal-title":"Comput. Methods Programs Biomed."},{"key":"10.1016\/j.cmpb.2023.107923_br0190","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2021.103107","article-title":"Mfcc-based recurrent neural network for automatic clinical depression recognition and assessment from speech","volume":"71","author":"Rejaibi","year":"2022","journal-title":"Biomed. Signal Process. Control"},{"key":"10.1016\/j.cmpb.2023.107923_br0200","doi-asserted-by":"crossref","first-page":"904","DOI":"10.1016\/j.jad.2021.08.090","article-title":"Multi-modal depression detection based on emotional audio and evaluation text","volume":"295","author":"Ye","year":"2021","journal-title":"J. Affect. Disord."},{"key":"10.1016\/j.cmpb.2023.107923_br0210","author":"Haque"},{"issue":"09","key":"10.1016\/j.cmpb.2023.107923_br0220","first-page":"1359","article-title":"Micro-expression and its applications","volume":"18","author":"Wu","year":"2010","journal-title":"Adv. Psychol. Sci."},{"key":"10.1016\/j.cmpb.2023.107923_br0230","doi-asserted-by":"crossref","first-page":"199","DOI":"10.3389\/fnbeh.2017.00199","article-title":"Comparison of ecological micro-expression recognition in patients with depression and healthy individuals","volume":"11","author":"Zhu","year":"2017","journal-title":"Front. Behav. Neurosci."},{"issue":"3","key":"10.1016\/j.cmpb.2023.107923_br0240","doi-asserted-by":"crossref","first-page":"488","DOI":"10.1037\/0021-843X.110.3.488","article-title":"Diminished response to pleasant stimuli by depressed women","volume":"110","author":"Sloan","year":"2001","journal-title":"J. Abnorm. Psychol."},{"issue":"1","key":"10.1016\/j.cmpb.2023.107923_br0250","doi-asserted-by":"crossref","first-page":"225","DOI":"10.1007\/s40120-021-00231-w","article-title":"Recognition of facial emotion expressions in patients with depressive disorders: a prospective, observational study","volume":"10","author":"Akhapkin","year":"2021","journal-title":"Neurol. Ther."},{"key":"10.1016\/j.cmpb.2023.107923_br0260","series-title":"The Annual Meeting of the International Communication Association","first-page":"1","article-title":"I see how you feel: training laypeople and professionals to recognize fleeting emotions","author":"Frank","year":"2009"},{"key":"10.1016\/j.cmpb.2023.107923_br0270","doi-asserted-by":"crossref","first-page":"1618","DOI":"10.1109\/TIP.2019.2912358","article-title":"Dynamic imaging network for micro expression recognition","volume":"29","author":"Verma","year":"2019","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.cmpb.2023.107923_br0280","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"1571","article-title":"Micro-expression recognition based on facial graph representation learning and facial action unit fusion","author":"Lei","year":"2021"},{"key":"10.1016\/j.cmpb.2023.107923_br0290","doi-asserted-by":"crossref","DOI":"10.1016\/j.jvcir.2021.103183","article-title":"Facial micro-expression recognition based on accordion spatio-temporal representation and random forests","volume":"79","author":"Guermazi","year":"2021","journal-title":"J. Vis. Commun. Image Represent."},{"key":"10.1016\/j.cmpb.2023.107923_br0300","doi-asserted-by":"crossref","first-page":"276","DOI":"10.1016\/j.neucom.2021.03.058","article-title":"A two-stage 3d cnn based learning method for spontaneous micro-expression recognition","volume":"448","author":"Zhao","year":"2021","journal-title":"Neurocomputing"},{"issue":"6","key":"10.1016\/j.cmpb.2023.107923_br0310","first-page":"819","article-title":"Attention bias to emotional faces in depression patients at different states","volume":"28","author":"Han","year":"2020","journal-title":"China J. Health Psychol."},{"key":"10.1016\/j.cmpb.2023.107923_br0320","article-title":"Revision of the Chinese facial affective picture system","author":"Gong","year":"2011","journal-title":"Chinese Mental Health J."},{"issue":"7","key":"10.1016\/j.cmpb.2023.107923_br0330","doi-asserted-by":"crossref","first-page":"735","DOI":"10.1176\/appi.ajp.2011.10091309","article-title":"Association of predeployment gaze bias for emotion stimuli with later symptoms of ptsd and depression in soldiers deployed in Iraq","volume":"168","author":"Beevers","year":"2011","journal-title":"Am. J. Psychiatr."},{"issue":"47","key":"10.1016\/j.cmpb.2023.107923_br0340","doi-asserted-by":"crossref","first-page":"15726","DOI":"10.1523\/JNEUROSCI.1856-10.2010","article-title":"Acute and sustained effects of cognitive emotion regulation in major depression","volume":"30","author":"Erk","year":"2010","journal-title":"J. Neurosci."},{"issue":"6","key":"10.1016\/j.cmpb.2023.107923_br0350","doi-asserted-by":"crossref","first-page":"1942","DOI":"10.1073\/pnas.0812686106","article-title":"The default mode network and self-referential processes in depression","volume":"106","author":"Sheline","year":"2009","journal-title":"Proc. Natl. Acad. Sci."},{"key":"10.1016\/j.cmpb.2023.107923_br0360","doi-asserted-by":"crossref","first-page":"261","DOI":"10.1007\/s00213-009-1536-1","article-title":"5-htt genotype effect on prefrontal\u2013amygdala coupling differs between major depression and controls","volume":"205","author":"Friedel","year":"2009","journal-title":"Psychopharmacol."},{"key":"10.1016\/j.cmpb.2023.107923_br0370","series-title":"International Affective Picture System (IAPS): Affective Ratings of Pictures and Instruction Manual","author":"Lang","year":"2005"},{"issue":"12","key":"10.1016\/j.cmpb.2023.107923_br0380","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0015058","article-title":"Impaired attribution of emotion to facial expressions in anxiety and major depression","volume":"5","author":"Demenescu","year":"2010","journal-title":"PLoS ONE"},{"issue":"3","key":"10.1016\/j.cmpb.2023.107923_br0390","doi-asserted-by":"crossref","first-page":"151","DOI":"10.1111\/pcn.12369","article-title":"Reading simple and complex facial expressions in patients with major depressive disorder and anxiety disorders","volume":"70","author":"Yoon","year":"2016","journal-title":"Psychiatry Clin. Neurosci."},{"key":"10.1016\/j.cmpb.2023.107923_br0400","series-title":"ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","first-page":"1080","article-title":"Encoding temporal information for automatic depression recognition from facial analysis","author":"Carneiro De Melo","year":"2020"},{"key":"10.1016\/j.cmpb.2023.107923_br0410","article-title":"Spectral representation of behaviour primitives for depression analysis","author":"Song","year":"2020","journal-title":"IEEE Trans. Affect. Comput."},{"key":"10.1016\/j.cmpb.2023.107923_br0420","doi-asserted-by":"crossref","first-page":"82","DOI":"10.1016\/j.image.2017.11.006","article-title":"Less is more: micro-expression recognition from video using apex frame","volume":"62","author":"Liong","year":"2018","journal-title":"Signal Process. Image Commun."},{"key":"10.1016\/j.cmpb.2023.107923_br0430","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"1571","article-title":"Micro-expression recognition based on facial graph representation learning and facial action unit fusion","author":"Lei","year":"2021"},{"key":"10.1016\/j.cmpb.2023.107923_br0440","series-title":"2019 IEEE International Conference on Image Processing (ICIP)","first-page":"36","article-title":"Dual-stream shallow networks for facial micro-expression recognition","author":"Khor","year":"2019"},{"key":"10.1016\/j.cmpb.2023.107923_br0450","doi-asserted-by":"crossref","first-page":"3956","DOI":"10.1109\/TIP.2021.3064258","article-title":"A convolutional neural network for spotting multi-scale micro-expression intervals in long videos","volume":"30","author":"Wang","year":"2021","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.cmpb.2023.107923_br0460","author":"Peng"},{"issue":"3","key":"10.1016\/j.cmpb.2023.107923_br0470","doi-asserted-by":"crossref","first-page":"1282","DOI":"10.1016\/j.patcog.2013.10.010","article-title":"Emotion recognition from geometric facial features using self-organizing map","volume":"47","author":"Majumder","year":"2014","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.cmpb.2023.107923_br0480","series-title":"2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018)","first-page":"59","article-title":"Openface 2.0: facial behavior analysis toolkit","author":"Baltrusaitis","year":"2018"},{"key":"10.1016\/j.cmpb.2023.107923_br0490","author":"Hyun Cheong"},{"issue":"23","key":"10.1016\/j.cmpb.2023.107923_br0500","doi-asserted-by":"crossref","DOI":"10.3390\/app112311171","article-title":"Viewpoint robustness of automated facial action unit detection systems","volume":"11","author":"Namba","year":"2021","journal-title":"Appl. Sci."},{"key":"10.1016\/j.cmpb.2023.107923_br0510","doi-asserted-by":"crossref","first-page":"36961","DOI":"10.1109\/ACCESS.2023.3264268","article-title":"A lightweight facial emotion recognition system using partial transfer learning for visually impaired people","volume":"11","author":"Shehada","year":"2023","journal-title":"IEEE Access"},{"issue":"1","key":"10.1016\/j.cmpb.2023.107923_br0520","doi-asserted-by":"crossref","first-page":"8425","DOI":"10.1038\/s41598-023-35446-4","article-title":"A study on computer vision for facial emotion recognition","volume":"13","author":"Huang","year":"2023","journal-title":"Sci. Rep."},{"issue":"8","key":"10.1016\/j.cmpb.2023.107923_br0530","doi-asserted-by":"crossref","first-page":"1735","DOI":"10.1162\/neco.1997.9.8.1735","article-title":"Long short-term memory","volume":"9","author":"Hochreiter","year":"1997","journal-title":"Neural Comput."},{"key":"10.1016\/j.cmpb.2023.107923_br0540","author":"Chung"},{"key":"10.1016\/j.cmpb.2023.107923_br0550","author":"Bai"},{"key":"10.1016\/j.cmpb.2023.107923_br0560","article-title":"Attention is all you need","volume":"30","author":"Vaswani","year":"2017","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.cmpb.2023.107923_br0570","series-title":"International Conference on Machine Learning","first-page":"10096","article-title":"Efficientnetv2: smaller models and faster training","author":"Tan","year":"2021"},{"key":"10.1016\/j.cmpb.2023.107923_br0580","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"7132","article-title":"Squeeze-and-excitation networks","author":"Hu","year":"2018"},{"issue":"1","key":"10.1016\/j.cmpb.2023.107923_br0590","doi-asserted-by":"crossref","first-page":"221","DOI":"10.1109\/TPAMI.2012.59","article-title":"3d convolutional neural networks for human action recognition","volume":"35","author":"Ji","year":"2012","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.cmpb.2023.107923_br0600","series-title":"Proceedings of the European Conference on Computer Vision (ECCV)","first-page":"305","article-title":"Rethinking spatiotemporal feature learning: speed-accuracy trade-offs in video classification","author":"Xie","year":"2018"},{"key":"10.1016\/j.cmpb.2023.107923_br0610","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"6450","article-title":"A closer look at spatiotemporal convolutions for action recognition","author":"Tran","year":"2018"},{"key":"10.1016\/j.cmpb.2023.107923_br0620","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"770","article-title":"Deep residual learning for image recognition","author":"He","year":"2016"},{"key":"10.1016\/j.cmpb.2023.107923_br0630","author":"Peng"},{"key":"10.1016\/j.cmpb.2023.107923_br0640","first-page":"17616","article-title":"Relative uncertainty learning for facial expression recognition","volume":"34","author":"Zhang","year":"2021","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.cmpb.2023.107923_br0650","series-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence","article-title":"Video-based facial micro-expression analysis: a survey of datasets, features and algorithms","author":"Ben","year":"2021"},{"key":"10.1016\/j.cmpb.2023.107923_br0660","article-title":"Cas (me) 3: a third generation facial spontaneous micro-expression database with depth information and high ecological validity","author":"Li","year":"2022","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.cmpb.2023.107923_br0670","series-title":"2018 IEEE Winter Conference on Applications of Computer Vision (WACV)","first-page":"839","article-title":"Grad-cam++: generalized gradient-based visual explanations for deep convolutional networks","author":"Chattopadhay","year":"2018"}],"container-title":["Computer Methods and Programs in Biomedicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0169260723005898?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0169260723005898?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,2,3]],"date-time":"2024-02-03T00:39:23Z","timestamp":1706920763000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0169260723005898"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,1]]},"references-count":67,"alternative-id":["S0169260723005898"],"URL":"https:\/\/doi.org\/10.1016\/j.cmpb.2023.107923","relation":{},"ISSN":["0169-2607"],"issn-type":[{"value":"0169-2607","type":"print"}],"subject":[],"published":{"date-parts":[[2024,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"SFTNet: A microexpression-based method for depression detection","name":"articletitle","label":"Article Title"},{"value":"Computer Methods and Programs in Biomedicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cmpb.2023.107923","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"107923"}}