{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,12]],"date-time":"2024-07-12T09:52:19Z","timestamp":1720777939311},"reference-count":71,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.es","clinicalkey.com.au","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computer Methods and Programs in Biomedicine"],"published-print":{"date-parts":[[2024,1]]},"DOI":"10.1016\/j.cmpb.2023.107904","type":"journal-article","created":{"date-parts":[[2023,10,30]],"date-time":"2023-10-30T13:52:39Z","timestamp":1698673959000},"page":"107904","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":1,"special_numbering":"C","title":["Deep learning-based grading of white matter hyperintensities enables identification of potential markers in multi-sequence MRI data"],"prefix":"10.1016","volume":"243","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-8200-9575","authenticated-orcid":false,"given":"Si","family":"Mu","sequence":"first","affiliation":[]},{"given":"Weizhao","family":"Lu","sequence":"additional","affiliation":[]},{"given":"Guanghui","family":"Yu","sequence":"additional","affiliation":[]},{"given":"Lei","family":"Zheng","sequence":"additional","affiliation":[]},{"given":"Jianfeng","family":"Qiu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.cmpb.2023.107904_bib0001","doi-asserted-by":"crossref","first-page":"918","DOI":"10.1016\/j.nicl.2017.12.022","article-title":"White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks","volume":"17","author":"Guerrero","year":"2018","journal-title":"Neuroimage Clin."},{"issue":"2","key":"10.1016\/j.cmpb.2023.107904_bib0002","doi-asserted-by":"crossref","first-page":"239","DOI":"10.5853\/jos.2017.02110","article-title":"Prevalence and risk factors of cerebral small vessel disease in a Chinese population-based sample","volume":"20","author":"Han","year":"2018","journal-title":"J. Stroke"},{"key":"10.1016\/j.cmpb.2023.107904_bib0003","doi-asserted-by":"crossref","DOI":"10.1016\/j.nicl.2019.102088","article-title":"Disrupted functional and structural connectivity within default mode network contribute to WMH-related cognitive impairment","volume":"24","author":"Chen","year":"2019","journal-title":"Neuroimage Clin."},{"key":"10.1016\/j.cmpb.2023.107904_bib0004","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2020.101712","article-title":"Automatic spatial estimation of white matter hyperintensities evolution in brain MRI using disease evolution predictor deep neural networks","volume":"63","author":"Rachmadi","year":"2020","journal-title":"Med. Image Anal."},{"issue":"12","key":"10.1016\/j.cmpb.2023.107904_bib0005","doi-asserted-by":"crossref","first-page":"1271","DOI":"10.1136\/jnnp-2021-326569","article-title":"Rate of, and risk factors for, white matter hyperintensity growth: a systematic review and meta-analysis with implications for clinical trial design","volume":"92","author":"Brown","year":"2021","journal-title":"J. Neurol. Neurosurg. Psychiatry"},{"issue":"4","key":"10.1016\/j.cmpb.2023.107904_bib0006","doi-asserted-by":"crossref","first-page":"384","DOI":"10.1159\/000207442","article-title":"Longitudinal cognitive decline in subcortical ischemic vascular disease\u2013the LADIS Study","volume":"27","author":"Jokinen","year":"2009","journal-title":"Cerebrovasc. Dis."},{"issue":"5","key":"10.1016\/j.cmpb.2023.107904_bib0007","doi-asserted-by":"crossref","first-page":"576","DOI":"10.1111\/cns.13283","article-title":"Microstructural disruption of the right inferior fronto-occipital and inferior longitudinal fasciculus contributes to WMH-related cognitive impairment","volume":"26","author":"Chen","year":"2020","journal-title":"CNS Neurosci. Ther."},{"issue":"1","key":"10.1016\/j.cmpb.2023.107904_bib0008","doi-asserted-by":"crossref","first-page":"272","DOI":"10.1007\/s00330-021-08106-2","article-title":"Risk factors analysis according to regional distribution of white matter hyperintensities in a stroke cohort","volume":"32","author":"Medrano-Martorell","year":"2022","journal-title":"Eur. Radiol."},{"issue":"9","key":"10.1016\/j.cmpb.2023.107904_bib0009","doi-asserted-by":"crossref","first-page":"1502","DOI":"10.1002\/acn3.51839","article-title":"Regional white matter hyperintensity volume in Parkinson's disease and associations with the motor signs","volume":"10","author":"Wu","year":"2023","journal-title":"Ann. Clin. Transl. Neurol."},{"key":"10.1016\/j.cmpb.2023.107904_bib0010","doi-asserted-by":"crossref","first-page":"107","DOI":"10.1016\/j.trci.2019.02.001","article-title":"White matter hyperintensities in vascular contributions to cognitive impairment and dementia (VCID): knowledge gaps and opportunities","volume":"5","author":"Alber","year":"2019","journal-title":"Alzheimers Dement. (N Y)"},{"issue":"2","key":"10.1016\/j.cmpb.2023.107904_bib0011","doi-asserted-by":"crossref","first-page":"909","DOI":"10.1016\/j.neurobiolaging.2014.07.048","article-title":"White matter hyperintensities and normal-appearing white matter integrity in the aging brain","volume":"36","author":"Maniega","year":"2015","journal-title":"Neurobiol. Aging"},{"key":"10.1016\/j.cmpb.2023.107904_bib0012","first-page":"255","article-title":"Age-related modifications of diffusion tensor imaging parameters and white matter hyperintensities as inter-dependent processes","volume":"7","author":"Pelletier","year":"2015","journal-title":"Front. Aging Neurosci."},{"issue":"6","key":"10.1016\/j.cmpb.2023.107904_bib0013","doi-asserted-by":"crossref","first-page":"1721","DOI":"10.1161\/STROKEAHA.113.004084","article-title":"White matter hyperintensities and their penumbra lie along a continuum of injury in the aging brain","volume":"45","author":"Maillard","year":"2014","journal-title":"Stroke"},{"issue":"9","key":"10.1016\/j.cmpb.2023.107904_bib0014","doi-asserted-by":"crossref","first-page":"1528","DOI":"10.1177\/0271678X16651268","article-title":"Comparison of cerebral blood flow and structural penumbras in relation to white matter hyperintensities: a multi-modal magnetic resonance imaging study","volume":"36","author":"Promjunyakul","year":"2016","journal-title":"J. Cereb. Blood Flow Metab."},{"issue":"Pt 4","key":"10.1016\/j.cmpb.2023.107904_bib0015","doi-asserted-by":"crossref","first-page":"1164","DOI":"10.1093\/brain\/aww008","article-title":"White matter hyperintensities and imaging patterns of brain ageing in the general population","volume":"139","author":"Habes","year":"2016","journal-title":"Brain"},{"issue":"4","key":"10.1016\/j.cmpb.2023.107904_bib0016","doi-asserted-by":"crossref","first-page":"1084","DOI":"10.1007\/s00330-012-2677-x","article-title":"Brain atrophy associations with white matter lesions in the ageing brain: the Lothian Birth Cohort 1936","volume":"23","author":"Aribisala","year":"2013","journal-title":"Eur. Radiol."},{"issue":"8","key":"10.1016\/j.cmpb.2023.107904_bib0017","doi-asserted-by":"crossref","first-page":"1076","DOI":"10.1111\/ene.12319","article-title":"Do cardiovascular risk factors explain the link between white matter hyperintensities and brain volumes in old age? A population-based study","volume":"21","author":"Wang","year":"2014","journal-title":"Eur. J. Neurol."},{"issue":"1","key":"10.1016\/j.cmpb.2023.107904_bib0018","doi-asserted-by":"crossref","first-page":"27","DOI":"10.1016\/j.neurobiolaging.2014.07.019","article-title":"Reconsidering harbingers of dementia: progression of parietal lobe white matter hyperintensities predicts Alzheimer's disease incidence","volume":"36","author":"Brickman","year":"2015","journal-title":"Neurobiol. Aging"},{"issue":"3","key":"10.1016\/j.cmpb.2023.107904_bib0019","doi-asserted-by":"crossref","first-page":"157","DOI":"10.1038\/nrneurol.2015.10","article-title":"White matter hyperintensities, cognitive impairment and dementia: an update","volume":"11","author":"Prins","year":"2015","journal-title":"Nat. Rev. Neurol."},{"issue":"6","key":"10.1016\/j.cmpb.2023.107904_bib0020","doi-asserted-by":"crossref","DOI":"10.1161\/JAHA.114.001140","article-title":"What are white matter hyperintensities made of? Relevance to vascular cognitive impairment","volume":"4","author":"Wardlaw","year":"2015","journal-title":"J. Am. Heart Assoc."},{"issue":"7","key":"10.1016\/j.cmpb.2023.107904_bib0021","doi-asserted-by":"crossref","first-page":"1917","DOI":"10.1161\/STROKEAHA.110.609768","article-title":"White matter hyperintensity penumbra","volume":"42","author":"Maillard","year":"2011","journal-title":"Stroke"},{"issue":"24","key":"10.1016\/j.cmpb.2023.107904_bib0022","doi-asserted-by":"crossref","first-page":"e2119","DOI":"10.1212\/WNL.0000000000005684","article-title":"Baseline NAWM structural integrity and CBF predict periventricular WMH expansion over time","volume":"90","author":"Promjunyakul","year":"2018","journal-title":"Neurology"},{"issue":"1","key":"10.1016\/j.cmpb.2023.107904_bib0023","doi-asserted-by":"crossref","first-page":"98","DOI":"10.1002\/acn3.688","article-title":"Retinal image analytics detects white matter hyperintensities in healthy adults","volume":"6","author":"Lau","year":"2019","journal-title":"Ann. Clin. Transl. Neurol."},{"key":"10.1016\/j.cmpb.2023.107904_bib0024","doi-asserted-by":"crossref","first-page":"324","DOI":"10.1016\/j.neuroimage.2014.04.056","article-title":"Lesion segmentation from multimodal MRI using random forest following ischemic stroke","volume":"98","author":"Mitra","year":"2014","journal-title":"Neuroimage"},{"issue":"3","key":"10.1016\/j.cmpb.2023.107904_bib0025","doi-asserted-by":"crossref","first-page":"300","DOI":"10.1016\/j.acra.2007.10.012","article-title":"Computer-assisted segmentation of white matter lesions in 3D MR images using support vector machine","volume":"15","author":"Lao","year":"2008","journal-title":"Acad. Radiol."},{"issue":"4","key":"10.1016\/j.cmpb.2023.107904_bib0026","doi-asserted-by":"crossref","first-page":"1795","DOI":"10.3390\/e17041795","article-title":"Preclinical diagnosis of magnetic resonance (MR) brain images via discrete wavelet packet transform with tsallis entropy and generalized eigenvalue proximal support vector machine (GEPSVM)","volume":"17","author":"Zhang","year":"2015","journal-title":"Entropy"},{"issue":"5","key":"10.1016\/j.cmpb.2023.107904_bib0027","doi-asserted-by":"crossref","first-page":"1252","DOI":"10.1109\/TMI.2016.2548501","article-title":"Automatic segmentation of MR brain images with a convolutional neural network","volume":"35","author":"Moeskops","year":"2016","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.cmpb.2023.107904_bib0028","doi-asserted-by":"crossref","first-page":"214","DOI":"10.1016\/j.neuroimage.2014.12.061","article-title":"Deep convolutional neural networks for multi-modality isointense infant brain image segmentation","volume":"108","author":"Zhang","year":"2015","journal-title":"Neuroimage"},{"key":"10.1016\/j.cmpb.2023.107904_bib0029","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2020.101791","article-title":"Attention convolutional neural network for accurate segmentation and quantification of lesions in ischemic stroke disease","volume":"65","author":"Liu","year":"2020","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.cmpb.2023.107904_bib0030","first-page":"663","article-title":"Brain atlas guided attention U-Net for white matter hyperintensity segmentation","volume":"2021","author":"Zhang","year":"2021","journal-title":"AMIA Jt. Summits Transl. Sci. Proc."},{"key":"10.1016\/j.cmpb.2023.107904_bib0031","article-title":"Filter pruning via learned representation median in the frequency domain","author":"Zhang","year":"2021","journal-title":"IEEE Trans. Cybern."},{"issue":"32","key":"10.1016\/j.cmpb.2023.107904_bib0032","doi-asserted-by":"crossref","first-page":"eaaz6892","DOI":"10.1126\/sciadv.aaz6892","article-title":"The evolution of white matter microstructural changes after mild traumatic brain injury: a longitudinal DTI and NODDI study","volume":"6","author":"Palacios","year":"2020","journal-title":"Sci. Adv."},{"issue":"2","key":"10.1016\/j.cmpb.2023.107904_bib0033","doi-asserted-by":"crossref","first-page":"515","DOI":"10.3233\/JAD-170573","article-title":"White matter hyperintensities and cognition in mild cognitive impairment and Alzheimer's disease: a domain-specific meta-analysis","volume":"63","author":"van den Berg","year":"2018","journal-title":"J. Alzheimers Dis."},{"key":"10.1016\/j.cmpb.2023.107904_bib0034","doi-asserted-by":"crossref","first-page":"741","DOI":"10.3389\/fpsyt.2018.00741","article-title":"Effects of cerebral blood flow and white matter integrity on cognition in CADASIL patients","volume":"9","author":"Yin","year":"2018","journal-title":"Front. Psychiatry"},{"key":"10.1016\/j.cmpb.2023.107904_bib0035","doi-asserted-by":"crossref","first-page":"224","DOI":"10.1016\/j.nicl.2015.04.012","article-title":"Characterizing the white matter hyperintensity penumbra with cerebral blood flow measures","volume":"8","author":"Promjunyakul","year":"2015","journal-title":"Neuroimage Clin."},{"issue":"1","key":"10.1016\/j.cmpb.2023.107904_bib0036","doi-asserted-by":"crossref","first-page":"16","DOI":"10.1016\/j.neurobiolaging.2004.12.008","article-title":"Cerebral changes on MRI and cognitive function: the CASCADE study","volume":"27","author":"Soderlund","year":"2006","journal-title":"Neurobiol. Aging"},{"issue":"4","key":"10.1016\/j.cmpb.2023.107904_bib0037","doi-asserted-by":"crossref","first-page":"317","DOI":"10.1111\/j.1552-6569.2010.00527.x","article-title":"Voxel-based analysis of diffusion tensor imaging in patients with subcortical vascular cognitive impairment: correlates with cognitive and motor deficits","volume":"21","author":"Kim","year":"2011","journal-title":"J. Neuroimaging"},{"issue":"9182","key":"10.1016\/j.cmpb.2023.107904_bib0038","doi-asserted-by":"crossref","first-page":"919","DOI":"10.1016\/S0140-6736(99)02355-7","article-title":"Cerebrovascular disease and threshold for dementia in the early stages of Alzheimer's disease","volume":"354","author":"Esiri","year":"1999","journal-title":"Lancet"},{"issue":"4","key":"10.1016\/j.cmpb.2023.107904_bib0039","doi-asserted-by":"crossref","first-page":"819","DOI":"10.1111\/ggi.12176","article-title":"Relationship between small cerebral white matter lesions and cognitive function in patients with Alzheimer's disease and amnestic mild cognitive impairment","volume":"14","author":"Makino","year":"2014","journal-title":"Geriatr. Gerontol. Int."},{"issue":"2","key":"10.1016\/j.cmpb.2023.107904_bib0040","doi-asserted-by":"crossref","first-page":"533","DOI":"10.3233\/JAD-180280","article-title":"Regional white matter hyperintensity influences grey matter atrophy in mild cognitive impairment","volume":"66","author":"Vipin","year":"2018","journal-title":"J. Alzheimers Dis."},{"key":"10.1016\/j.cmpb.2023.107904_bib0041","doi-asserted-by":"crossref","first-page":"194","DOI":"10.1016\/j.nicl.2015.07.002","article-title":"Characterising the grey matter correlates of leukoaraiosis in cerebral small vessel disease","volume":"9","author":"Lambert","year":"2015","journal-title":"Neuroimage Clin."},{"issue":"3","key":"10.1016\/j.cmpb.2023.107904_bib0042","doi-asserted-by":"crossref","first-page":"351","DOI":"10.1111\/jon.12699","article-title":"White and gray matter abnormalities in manifest Huntington's disease: cross-sectional and longitudinal analysis","volume":"30","author":"Sweidan","year":"2020","journal-title":"J. Neuroimaging"},{"key":"10.1016\/j.cmpb.2023.107904_bib0043","doi-asserted-by":"crossref","first-page":"539","DOI":"10.1016\/j.neuroimage.2018.03.050","article-title":"UBO detector - a cluster-based, fully automated pipeline for extracting white matter hyperintensities","volume":"174","author":"Jiang","year":"2018","journal-title":"Neuroimage"},{"key":"10.1016\/j.cmpb.2023.107904_bib0044","doi-asserted-by":"crossref","first-page":"52","DOI":"10.1016\/j.bspc.2016.06.016","article-title":"Multimodal spatial-based segmentation framework for white matter lesions in multi-sequence magnetic resonance images","volume":"31","author":"Zhan","year":"2017","journal-title":"Biomed. Signal Process. Control"},{"issue":"5","key":"10.1016\/j.cmpb.2023.107904_bib0045","doi-asserted-by":"crossref","first-page":"1018","DOI":"10.1109\/TMI.2014.2366792","article-title":"Transfer learning improves supervised image segmentation across imaging protocols","volume":"34","author":"van Opbroek","year":"2015","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"1","key":"10.1016\/j.cmpb.2023.107904_bib0046","doi-asserted-by":"crossref","first-page":"245","DOI":"10.1016\/j.media.2015.06.010","article-title":"Weighting training images by maximizing distribution similarity for supervised segmentation across scanners","volume":"24","author":"Opbroek","year":"2015","journal-title":"Med. Image Anal."},{"issue":"2","key":"10.1016\/j.cmpb.2023.107904_bib0047","doi-asserted-by":"crossref","first-page":"378","DOI":"10.1016\/j.neuroimage.2011.03.080","article-title":"Spatial decision forests for MS lesion segmentation in multi-channel magnetic resonance images","volume":"57","author":"Geremia","year":"2011","journal-title":"Neuroimage"},{"issue":"2","key":"10.1016\/j.cmpb.2023.107904_bib0048","doi-asserted-by":"crossref","first-page":"153","DOI":"10.1002\/ima.22132","article-title":"Feed-forward neural network optimized by hybridization of PSO and ABC for abnormal brain detection","volume":"25","author":"Wang","year":"2015","journal-title":"Int. J. Imaging Syst. Technol."},{"issue":"8","key":"10.1016\/j.cmpb.2023.107904_bib0049","doi-asserted-by":"crossref","first-page":"10973","DOI":"10.18632\/aging.202977","article-title":"Association between white matter hyperintensity load and grey matter atrophy in mild cognitive impairment is not unidirectional","volume":"13","author":"Vipin","year":"2021","journal-title":"Aging (Albany NY)"},{"issue":"3","key":"10.1016\/j.cmpb.2023.107904_bib0050","doi-asserted-by":"crossref","first-page":"617.e1","DOI":"10.1016\/j.neurobiolaging.2010.07.013","article-title":"Normal age-related brain morphometric changes: nonuniformity across cortical thickness, surface area and gray matter volume?","volume":"33","author":"Lemaitre","year":"2012","journal-title":"Neurobiol Aging"},{"issue":"4","key":"10.1016\/j.cmpb.2023.107904_bib0051","doi-asserted-by":"crossref","first-page":"1215","DOI":"10.1016\/j.neuroimage.2010.04.258","article-title":"Longitudinal changes in cortical thickness associated with normal aging","volume":"52","author":"Thambisetty","year":"2010","journal-title":"Neuroimage"},{"issue":"2","key":"10.1016\/j.cmpb.2023.107904_bib0052","doi-asserted-by":"crossref","first-page":"871","DOI":"10.1016\/j.neuroimage.2012.01.102","article-title":"MRI atrophy of the caudate nucleus and slower walking speed in the elderly","volume":"60","author":"Dumurgier","year":"2012","journal-title":"Neuroimage"},{"issue":"10","key":"10.1016\/j.cmpb.2023.107904_bib0053","doi-asserted-by":"crossref","first-page":"2297","DOI":"10.1093\/cercor\/bhr306","article-title":"Longitudinal structure-function correlates in elderly reveal MTL dysfunction with cognitive decline","volume":"22","author":"Persson","year":"2012","journal-title":"Cereb. Cortex"},{"issue":"1","key":"10.1016\/j.cmpb.2023.107904_bib0054","doi-asserted-by":"crossref","first-page":"83","DOI":"10.1016\/j.neuroimage.2008.03.061","article-title":"Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference","volume":"44","author":"Smith","year":"2009","journal-title":"Neuroimage"},{"issue":"1","key":"10.1016\/j.cmpb.2023.107904_bib0055","doi-asserted-by":"crossref","first-page":"2","DOI":"10.1136\/jnnp.70.1.2","article-title":"Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study: the Rotterdam Scan Study","volume":"70","author":"Wardlaw","year":"2001","journal-title":"J. Neurol. Neurosurg. Psychiatry"},{"key":"10.1016\/j.cmpb.2023.107904_bib0056","doi-asserted-by":"crossref","first-page":"218","DOI":"10.3389\/fnagi.2020.00218","article-title":"Changes over time of diffusion MRI in the white matter of aging brain, a good predictor of verbal recall","volume":"12","author":"Nicolas","year":"2020","journal-title":"Front. Aging Neurosci."},{"key":"10.1016\/j.cmpb.2023.107904_bib0057","doi-asserted-by":"crossref","first-page":"266","DOI":"10.3389\/fnagi.2014.00266","article-title":"Diffusion tensor imaging in Alzheimer's disease: insights into the limbic-diencephalic network and methodological considerations","volume":"6","author":"Acosta-Cabronero","year":"2014","journal-title":"Front. Aging Neurosci."},{"issue":"46","key":"10.1016\/j.cmpb.2023.107904_bib0058","doi-asserted-by":"crossref","first-page":"15425","DOI":"10.1523\/JNEUROSCI.0203-14.2014","article-title":"Accelerated changes in white matter microstructure during aging: a longitudinal diffusion tensor imaging study","volume":"34","author":"Sexton","year":"2014","journal-title":"J. Neurosci."},{"key":"10.1016\/j.cmpb.2023.107904_bib0059","doi-asserted-by":"crossref","first-page":"193","DOI":"10.1016\/j.neuroimage.2015.10.085","article-title":"White matter and memory in healthy adults: coupled changes over two years","volume":"131","author":"Bender","year":"2016","journal-title":"Neuroimage"},{"key":"10.1016\/j.cmpb.2023.107904_bib0060","doi-asserted-by":"crossref","first-page":"74","DOI":"10.1016\/j.neuroimage.2015.10.030","article-title":"Differential aging of cerebral white matter in middle-aged and older adults: a seven-year follow-up","volume":"125","author":"Bender","year":"2016","journal-title":"Neuroimage"},{"issue":"3","key":"10.1016\/j.cmpb.2023.107904_bib0061","doi-asserted-by":"crossref","first-page":"741","DOI":"10.18632\/aging.101186","article-title":"Patterns of brain atrophy associated with episodic memory and semantic fluency decline in aging","volume":"9","author":"Pelletier","year":"2017","journal-title":"Aging (Albany NY)"},{"issue":"3","key":"10.1016\/j.cmpb.2023.107904_bib0062","doi-asserted-by":"crossref","first-page":"627","DOI":"10.1002\/jmri.25017","article-title":"Short-term white matter alterations in Alzheimer's disease characterized by diffusion tensor imaging","volume":"43","author":"Genc","year":"2016","journal-title":"J. Magn. Reson. Imaging"},{"key":"10.1016\/j.cmpb.2023.107904_bib0063","doi-asserted-by":"crossref","first-page":"595","DOI":"10.1016\/j.nicl.2017.09.007","article-title":"Longitudinal white matter change in frontotemporal dementia subtypes and sporadic late onset Alzheimer's disease","volume":"16","author":"Elahi","year":"2017","journal-title":"Neuroimage Clin."},{"issue":"6","key":"10.1016\/j.cmpb.2023.107904_bib0064","doi-asserted-by":"crossref","first-page":"742","DOI":"10.1136\/jnnp.72.6.742","article-title":"White matter damage in Alzheimer's disease assessed in vivo using diffusion tensor magnetic resonance imaging","volume":"72","author":"Bozzali","year":"2002","journal-title":"J. Neurol. Neurosurg. Psychiatry"},{"key":"10.1016\/j.cmpb.2023.107904_bib0065","doi-asserted-by":"crossref","first-page":"172","DOI":"10.1016\/j.neurobiolaging.2017.04.024","article-title":"White-matter integrity on DTI and the pathologic staging of Alzheimer's disease","volume":"56","author":"Kantarci","year":"2017","journal-title":"Neurobiol. Aging"},{"issue":"9","key":"10.1016\/j.cmpb.2023.107904_bib0066","doi-asserted-by":"crossref","first-page":"e00766","DOI":"10.1002\/brb3.766","article-title":"Predicting neurocognitive function with hippocampal volumes and DTI metrics in patients with Alzheimer's dementia and mild cognitive impairment","volume":"7","author":"Shim","year":"2017","journal-title":"Brain Behav."},{"issue":"10","key":"10.1016\/j.cmpb.2023.107904_bib0067","doi-asserted-by":"crossref","first-page":"1610","DOI":"10.1038\/jcbfm.2015.92","article-title":"Reduced blood flow in normal white matter predicts development of leukoaraiosis","volume":"35","author":"Bernbaum","year":"2015","journal-title":"J. Cereb. Blood Flow Metab."},{"issue":"5","key":"10.1016\/j.cmpb.2023.107904_bib0068","doi-asserted-by":"crossref","first-page":"919","DOI":"10.1093\/geronb\/gbz139","article-title":"Loneliness increases the risk of all-cause dementia and Alzheimer's disease","volume":"75","author":"Sundstrom","year":"2020","journal-title":"J. Gerontol. B Psychol. Sci. Soc. Sci."},{"key":"10.1016\/j.cmpb.2023.107904_bib0069","doi-asserted-by":"crossref","DOI":"10.3389\/fneur.2021.647848","article-title":"Associations between white matter hyperintensity burden, cerebral blood flow and transit time in small vessel disease: an updated meta-analysis","volume":"12","author":"Stewart","year":"2021","journal-title":"Front. Neurol."},{"issue":"8","key":"10.1016\/j.cmpb.2023.107904_bib0070","doi-asserted-by":"crossref","first-page":"719","DOI":"10.1161\/CIRCULATIONAHA.117.027448","article-title":"Heart-brain connection collaborative research G: cerebral perfusion and the risk of dementia: a population-based study","volume":"136","author":"Wolters","year":"2017","journal-title":"Circulation"},{"issue":"4","key":"10.1016\/j.cmpb.2023.107904_bib0071","doi-asserted-by":"crossref","first-page":"1711","DOI":"10.3233\/JAD-201474","article-title":"Alzheimer's disease neuroimaging I: entorhinal perfusion predicts future memory decline, neurodegeneration, and white matter hyperintensity progression in older adults","volume":"81","author":"Bangen","year":"2021","journal-title":"J. Alzheimers Dis."}],"container-title":["Computer Methods and Programs in Biomedicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0169260723005709?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0169260723005709?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,1,9]],"date-time":"2024-01-09T06:19:42Z","timestamp":1704781182000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0169260723005709"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,1]]},"references-count":71,"alternative-id":["S0169260723005709"],"URL":"https:\/\/doi.org\/10.1016\/j.cmpb.2023.107904","relation":{},"ISSN":["0169-2607"],"issn-type":[{"value":"0169-2607","type":"print"}],"subject":[],"published":{"date-parts":[[2024,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Deep learning-based grading of white matter hyperintensities enables identification of potential markers in multi-sequence MRI data","name":"articletitle","label":"Article Title"},{"value":"Computer Methods and Programs in Biomedicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cmpb.2023.107904","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"107904"}}