{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,6]],"date-time":"2024-10-06T01:16:19Z","timestamp":1728177379977},"reference-count":45,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,10,17]],"date-time":"2023-10-17T00:00:00Z","timestamp":1697500800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.es","clinicalkey.com.au","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computer Methods and Programs in Biomedicine"],"published-print":{"date-parts":[[2024,1]]},"DOI":"10.1016\/j.cmpb.2023.107861","type":"journal-article","created":{"date-parts":[[2023,10,19]],"date-time":"2023-10-19T03:08:20Z","timestamp":1697684900000},"page":"107861","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":3,"special_numbering":"C","title":["High-resolution conductivity reconstruction by electrical impedance tomography using structure-aware hybrid-fusion learning"],"prefix":"10.1016","volume":"243","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-6237-0179","authenticated-orcid":false,"given":"Hao","family":"Yu","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3755-5184","authenticated-orcid":false,"given":"Haoyu","family":"Liu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4007-3290","authenticated-orcid":false,"given":"Zhe","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Zeyu","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Jiabin","family":"Jia","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"1","key":"10.1016\/j.cmpb.2023.107861_bib0001","doi-asserted-by":"crossref","first-page":"31","DOI":"10.1016\/j.vaa.2017.06.004","article-title":"Regional ventilation distribution and dead space in anaesthetized horses treated with and without continuous positive airway pressure: novel insights by electrical impedance tomography and volumetric capnography","volume":"45","author":"Mosing","year":"2018","journal-title":"Vet. Anaesth. Analg."},{"issue":"3","key":"10.1016\/j.cmpb.2023.107861_bib0002","doi-asserted-by":"crossref","first-page":"345","DOI":"10.6061\/clinics\/2013(03)OA10","article-title":"Electrical impedance tomography to evaluate air distribution prior to extubation in very-low-birth-weight infants: a feasibility study","volume":"68","author":"Rossi","year":"2013","journal-title":"Clinics"},{"key":"10.1016\/j.cmpb.2023.107861_bib0003","doi-asserted-by":"crossref","DOI":"10.1016\/j.jclinane.2021.110626","article-title":"Evaluation of atelectasis using electrical impedance tomography during procedural deep sedation for MRI in small children: a prospective observational trial","volume":"77","author":"Riva","year":"2022","journal-title":"J. Clin. Anesth."},{"key":"10.1016\/j.cmpb.2023.107861_bib0004","doi-asserted-by":"crossref","DOI":"10.1016\/j.cmpb.2022.107265","article-title":"Cone-beam X-ray luminescence computed tomography based on MLEM with adaptive FISTA initial image","volume":"229","author":"Liu","year":"2023","journal-title":"Comput. Methods Programs Biomed."},{"key":"10.1016\/j.cmpb.2023.107861_bib0005","doi-asserted-by":"crossref","DOI":"10.1016\/j.cmpb.2020.105817","article-title":"Simulator-generated training datasets as an alternative to using patient data for machine learning: an example in myocardial segmentation with MRI","volume":"198","author":"Xanthis","year":"2021","journal-title":"Comput. Methods Programs Biomed."},{"key":"10.1016\/j.cmpb.2023.107861_bib0006","doi-asserted-by":"crossref","DOI":"10.1016\/j.cmpb.2023.107613","article-title":"Optimal machine learning methods for prediction of high-flow nasal cannula outcomes using image features from electrical impedance tomography","volume":"238","author":"Yang","year":"2023","journal-title":"Comput. Methods Programs Biomed."},{"issue":"2","key":"10.1016\/j.cmpb.2023.107861_bib0007","doi-asserted-by":"crossref","first-page":"246","DOI":"10.1016\/j.bja.2019.04.056","article-title":"Measurement of relative lung perfusion with electrical impedance and positron emission tomography: an experimental comparative study in pigs","volume":"123","author":"Bluth","year":"2019","journal-title":"Br. J. Anaesth."},{"issue":"8","key":"10.1016\/j.cmpb.2023.107861_bib0008","doi-asserted-by":"crossref","first-page":"3105","DOI":"10.1109\/JBHI.2021.3059016","article-title":"Inferring respiratory and circulatory parameters from electrical impedance tomography with deep recurrent models","volume":"25","author":"Strodthoff","year":"2020","journal-title":"IEEE J. Biomed. Heal. Informatics."},{"issue":"4","key":"10.1016\/j.cmpb.2023.107861_bib0009","doi-asserted-by":"crossref","first-page":"1360","DOI":"10.1109\/TBME.2020.3027827","article-title":"Supervised descent learning for thoracic electrical impedance tomography","volume":"68","author":"Zhang","year":"2021","journal-title":"IEEE Trans. Biomed. Eng."},{"key":"10.1016\/j.cmpb.2023.107861_bib0010","doi-asserted-by":"crossref","first-page":"68","DOI":"10.1016\/j.bspc.2016.02.001","article-title":"Tidal volume monitoring by a set of tetrapolar impedance measurements selected from the 16-electrodes arrangement used in electrical impedance tomography (EIT) technique. Calibration equations in a group of healthy males","volume":"27","author":"Balleza-ordaz","year":"2016","journal-title":"Biomed. Signal Process. Control."},{"key":"10.1016\/j.cmpb.2023.107861_bib0011","first-page":"180","article-title":"Inverse problem solution for model with lungs and heart in EIT","author":"Rymarczyk","year":"2019","journal-title":"Appl. Electromagn. Mod. Eng. Med."},{"key":"10.1016\/j.cmpb.2023.107861_bib0012","first-page":"1","article-title":"Multiscale voltage reconstruction with attention-based network for volume fraction prediction of industrial oil-water two-phase flow by EIT","volume":"71","author":"Yu","year":"2022","journal-title":"IEEE Trans. Instrum. Meas."},{"issue":"12","key":"10.1016\/j.cmpb.2023.107861_bib0013","doi-asserted-by":"crossref","first-page":"2423","DOI":"10.1088\/0967-3334\/36\/12\/2423","article-title":"Correcting electrode modelling errors in EIT on realistic 3D head models","volume":"36","author":"Jehl","year":"2015","journal-title":"Physiol. Meas."},{"issue":"8","key":"10.1016\/j.cmpb.2023.107861_bib0014","doi-asserted-by":"crossref","first-page":"1367","DOI":"10.1007\/s11517-017-1782-z","article-title":"Higher order total variation regularization for EIT reconstruction","volume":"56","author":"Gong","year":"2018","journal-title":"Med. Biol. Eng. Comput."},{"issue":"9","key":"10.1016\/j.cmpb.2023.107861_bib0015","doi-asserted-by":"crossref","first-page":"2090","DOI":"10.1109\/TMI.2018.2816739","article-title":"Image reconstruction in electrical impedance tomography based on structure-aware sparse bayesian learning","volume":"37","author":"Liu","year":"2018","journal-title":"IEEE Trans. Med. Imaging."},{"issue":"3","key":"10.1016\/j.cmpb.2023.107861_bib0016","doi-asserted-by":"crossref","first-page":"585","DOI":"10.1088\/0266-5611\/19\/3\/308","article-title":"Tikhonov regularization for electrical impedance tomography on unbounded domains","volume":"19","author":"Lukaschewitsch","year":"2003","journal-title":"Inverse Probl."},{"issue":"17","key":"10.1016\/j.cmpb.2023.107861_bib0017","doi-asserted-by":"crossref","first-page":"19101","DOI":"10.1109\/JSEN.2021.3088881","article-title":"Computational focusing sensor: enhancing spatial resolution of electrical impedance tomography in region of interest","volume":"21","author":"Wang","year":"2021","journal-title":"IEEE Sens. J."},{"issue":"10","key":"10.1016\/j.cmpb.2023.107861_bib0018","doi-asserted-by":"crossref","first-page":"2367","DOI":"10.1109\/TMI.2018.2828303","article-title":"Deep d-Bar: real-time electrical impedance tomography imaging with deep neural networks","volume":"37","author":"Hamilton","year":"2018","journal-title":"IEEE Trans. Med. Imaging."},{"key":"10.1016\/j.cmpb.2023.107861_bib0019","first-page":"1","article-title":"Deep Autoencoder imaging method for electrical impedance tomography","volume":"70","author":"Chen","year":"2021","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"10.1016\/j.cmpb.2023.107861_bib0020","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2022.104421","article-title":"SAR-CGAN: improved generative adversarial network for EIT reconstruction of lung diseases","volume":"81","author":"Li","year":"2023","journal-title":"Biomed. Signal Process. Control."},{"key":"10.1016\/j.cmpb.2023.107861_bib0021","article-title":"Use of the double-stage LSTM network in electrical tomography for 3D wall moisture imaging","volume":"213","author":"Grzegorz","year":"2023","journal-title":"Measurement."},{"issue":"9","key":"10.1016\/j.cmpb.2023.107861_bib0022","doi-asserted-by":"crossref","first-page":"2546","DOI":"10.1109\/TBME.2019.2891676","article-title":"Dominant-current deep learning scheme for electrical impedance tomography","volume":"66","author":"Wei","year":"2019","journal-title":"IEEE Trans. Biomed. Eng."},{"issue":"7","key":"10.1016\/j.cmpb.2023.107861_bib0023","doi-asserted-by":"crossref","first-page":"9277","DOI":"10.1109\/JSEN.2021.3050845","article-title":"Shape reconstruction with multiphase conductivity for electrical impedance tomography using improved convolutional neural network method","volume":"21","author":"Wu","year":"2021","journal-title":"IEEE Sens. J."},{"key":"10.1016\/j.cmpb.2023.107861_bib0024","first-page":"1","article-title":"Deep learning based cell imaging with electrical impedance tomography","author":"Chen","year":"2020","journal-title":"2020 IEEE Int. Instrum. Meas. Technol. Conf."},{"issue":"7","key":"10.1016\/j.cmpb.2023.107861_bib0025","doi-asserted-by":"crossref","first-page":"4887","DOI":"10.1109\/TIM.2019.2954722","article-title":"A two-stage deep learning method for robust shape reconstruction with electrical impedance tomography","volume":"69","author":"Ren","year":"2020","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"10.1016\/j.cmpb.2023.107861_bib0026","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TIM.2022.3216413","article-title":"Error-constraint deep learning scheme for electrical impedance tomography (EIT)","volume":"71","author":"Wang","year":"2022","journal-title":"IEEE Trans. Instrum. Meas."},{"issue":"1","key":"10.1016\/j.cmpb.2023.107861_bib0027","doi-asserted-by":"crossref","first-page":"196","DOI":"10.1109\/JSEN.2018.2876411","article-title":"Image reconstruction based on convolutional neural network for electrical resistance tomography","volume":"19","author":"Tan","year":"2019","journal-title":"IEEE Sens. J."},{"issue":"2","key":"10.1016\/j.cmpb.2023.107861_bib0028","doi-asserted-by":"crossref","first-page":"15946","DOI":"10.1016\/j.ifacol.2020.12.360","article-title":"Electrical impedance tomography image reconstruction based on neural networks","volume":"53","author":"Bianchessi","year":"2020","journal-title":"IFAC-PapersOnLine"},{"key":"10.1016\/j.cmpb.2023.107861_bib0029","first-page":"1","article-title":"Structure-aware dual-branch network for electrical impedance tomography in cell culture imaging","volume":"70","author":"Chen","year":"2021","journal-title":"IEEE Trans. Instrum. Meas."},{"issue":"19","key":"10.1016\/j.cmpb.2023.107861_bib0030","doi-asserted-by":"crossref","first-page":"21893","DOI":"10.1109\/JSEN.2021.3104967","article-title":"Image reconstruction of electrical impedance tomography based on optical image-guided group sparsity","volume":"21","author":"Liu","year":"2021","journal-title":"IEEE Sens. J."},{"issue":"4","key":"10.1016\/j.cmpb.2023.107861_bib0031","doi-asserted-by":"crossref","first-page":"1023","DOI":"10.1137\/0152060","article-title":"Existence and uniqueness for electrode models for electric current computed tomography","volume":"52","author":"Somersalo","year":"1992","journal-title":"SIAM J. Appl. Math."},{"key":"10.1016\/j.cmpb.2023.107861_bib0032","first-page":"1","article-title":"Supershape recovery from electrical impedance tomography data","volume":"70","author":"Gu","year":"2021","journal-title":"IEEE Trans. Instrum. Meas."},{"issue":"5","key":"10.1016\/j.cmpb.2023.107861_bib0033","doi-asserted-by":"crossref","first-page":"1468","DOI":"10.1109\/TMAG.2005.844558","article-title":"The comparison between FVM and FEM for EIT forward problem","volume":"41","author":"Dong","year":"2005","journal-title":"IEEE Trans. Magn."},{"key":"10.1016\/j.cmpb.2023.107861_bib0034","unstructured":"M.-H. Guo, C.-Z. Lu, Z.-N. Liu, M.-M. Cheng, S.-M. Hu, Visual attention network, (2022) 1\u201321. http:\/\/arxiv.org\/abs\/2202.09741."},{"key":"10.1016\/j.cmpb.2023.107861_bib0035","unstructured":"D. Hendrycks, K. Gimpel, Gaussian Error Linear Units (GELUs), (2016) 1\u20139. http:\/\/arxiv.org\/abs\/1606.08415."},{"issue":"3","key":"10.1016\/j.cmpb.2023.107861_bib0036","doi-asserted-by":"crossref","first-page":"415","DOI":"10.1007\/s41095-022-0274-8","article-title":"PVTv2: improved baselines with pyramid vision transformer","volume":"8","author":"Wang","year":"2022","journal-title":"Comput. Vis. Media."},{"key":"10.1016\/j.cmpb.2023.107861_bib0037","unstructured":"J.L. Ba, J.R. Kiros, G.E. Hinton, Layer normalization, (2016). http:\/\/arxiv.org\/abs\/1607.06450."},{"key":"10.1016\/j.cmpb.2023.107861_bib0038","article-title":"U-Net: convolutional networks for biomedical image","author":"Ronneberger","year":"2015","journal-title":"segmentation"},{"key":"10.1016\/j.cmpb.2023.107861_bib0039","doi-asserted-by":"crossref","unstructured":"S. Xie, Z. Tu, Holistically-nested edge detection, in: 2015 IEEE Int. Conf. Comput. Vis., IEEE, 2015: pp. 1395\u20131403.","DOI":"10.1109\/ICCV.2015.164"},{"issue":"19","key":"10.1016\/j.cmpb.2023.107861_bib0040","doi-asserted-by":"crossref","first-page":"2183","DOI":"10.1001\/jama.1976.03270200021022","article-title":"Pleural effusion: a diagnostic dilemma","volume":"236","author":"Donal","year":"1976","journal-title":"JAMA"},{"key":"10.1016\/j.cmpb.2023.107861_bib0041","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TIM.2021.3123218","article-title":"Exploring respiratory motion tracking through electrical impedance tomography","volume":"70","author":"Wang","year":"2021","journal-title":"IEEE Trans. Instrum. Meas."},{"issue":"6","key":"10.1016\/j.cmpb.2023.107861_bib0042","doi-asserted-by":"crossref","first-page":"721","DOI":"10.1586\/17476348.2015.1103650","article-title":"Electrical impedance tomography: functional lung imaging on its way to clinical practice?","volume":"9","author":"Gong","year":"2015","journal-title":"Expert Rev. Resp. Med."},{"key":"10.1016\/j.cmpb.2023.107861_bib0043","unstructured":"A. Hauptmann, V. Kolehmainen, N.M. Mach, T. Savolainen, A. Sepp\u00e4nen, S. Siltanen, Open 2D electrical impedance tomography data archive, (2017) 1\u201315. http:\/\/arxiv.org\/abs\/1704.01178."},{"issue":"1","key":"10.1016\/j.cmpb.2023.107861_bib0044","doi-asserted-by":"crossref","DOI":"10.1088\/0957-0233\/20\/1\/015503","article-title":"Suitability of a PXI platform for an electrical impedance tomography system","volume":"20","author":"Kourunen","year":"2009","journal-title":"Meas. Sci. Technol."},{"issue":"8","key":"10.1016\/j.cmpb.2023.107861_bib0045","doi-asserted-by":"crossref","DOI":"10.1063\/1.4999359","article-title":"A multi-frequency electrical impedance tomography system for real-time 2D and 3D imaging","volume":"88","author":"Yang","year":"2017","journal-title":"Rev. Sci. Instrum."}],"container-title":["Computer Methods and Programs in Biomedicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0169260723005278?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0169260723005278?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,2,3]],"date-time":"2024-02-03T00:36:25Z","timestamp":1706920585000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0169260723005278"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,1]]},"references-count":45,"alternative-id":["S0169260723005278"],"URL":"https:\/\/doi.org\/10.1016\/j.cmpb.2023.107861","relation":{},"ISSN":["0169-2607"],"issn-type":[{"value":"0169-2607","type":"print"}],"subject":[],"published":{"date-parts":[[2024,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"High-resolution conductivity reconstruction by electrical impedance tomography using structure-aware hybrid-fusion learning","name":"articletitle","label":"Article Title"},{"value":"Computer Methods and Programs in Biomedicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cmpb.2023.107861","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 The Author(s). Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"107861"}}