{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,28]],"date-time":"2024-10-28T14:10:29Z","timestamp":1730124629278,"version":"3.28.0"},"reference-count":60,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,9,29]],"date-time":"2024-09-29T00:00:00Z","timestamp":1727568000000},"content-version":"am","delay-in-days":303,"URL":"http:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.es","clinicalkey.com.au","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computer Methods and Programs in Biomedicine"],"published-print":{"date-parts":[[2023,12]]},"DOI":"10.1016\/j.cmpb.2023.107807","type":"journal-article","created":{"date-parts":[[2023,9,20]],"date-time":"2023-09-20T15:37:19Z","timestamp":1695224239000},"page":"107807","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":3,"special_numbering":"C","title":["Stratifying knee osteoarthritis features through multitask deep hybrid learning: Data from the osteoarthritis initiative"],"prefix":"10.1016","volume":"242","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-4729-5235","authenticated-orcid":false,"given":"Yun Xin","family":"Teoh","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3442-0578","authenticated-orcid":false,"given":"Alice","family":"Othmani","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8602-0533","authenticated-orcid":false,"given":"Khin Wee","family":"Lai","sequence":"additional","affiliation":[]},{"given":"Siew Li","family":"Goh","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8983-0892","authenticated-orcid":false,"given":"Juliana","family":"Usman","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.cmpb.2023.107807_br0010","doi-asserted-by":"crossref","first-page":"134","DOI":"10.1016\/j.rehab.2016.01.006","article-title":"Risk factors and burden of osteoarthritis","volume":"59","author":"Palazzo","year":"2016","journal-title":"Ann. Phys. Rehabil. Med."},{"key":"10.1016\/j.cmpb.2023.107807_br0020","doi-asserted-by":"crossref","first-page":"1172","DOI":"10.1002\/art.42089","article-title":"Prevalence trends of site-specific osteoarthritis from 1990 to 2019: findings from the global burden of disease study 2019","volume":"74","author":"Long","year":"2022","journal-title":"Arthritis Rheumatol."},{"key":"10.1016\/j.cmpb.2023.107807_br0030","doi-asserted-by":"crossref","first-page":"703","DOI":"10.1002\/acr.21898","article-title":"Lifetime risk and age at diagnosis of symptomatic knee osteoarthritis in the US","volume":"65","author":"Losina","year":"2013","journal-title":"Arthritis Care Res."},{"key":"10.1016\/j.cmpb.2023.107807_br0040","article-title":"The prevalence of symptomatic knee osteoarthritis in relation to age, sex, area, region, and body mass index in China: a systematic review and meta-analysis","volume":"7","author":"Li","year":"2020","journal-title":"Front. Med."},{"key":"10.1016\/j.cmpb.2023.107807_br0050","doi-asserted-by":"crossref","first-page":"9","DOI":"10.1007\/s40471-020-00224-7","article-title":"Osteoarthritis and aging: young adults with osteoarthritis","volume":"7","author":"Driban","year":"2020","journal-title":"Curr. Epidemiol. Rep."},{"key":"10.1016\/j.cmpb.2023.107807_br0060","doi-asserted-by":"crossref","first-page":"1753","DOI":"10.1007\/s00167-016-4068-3","article-title":"Early osteoarthritis of the knee","volume":"24","author":"Madry","year":"2016","journal-title":"Knee Surg. Sports Traumatol. Arthrosc."},{"key":"10.1016\/j.cmpb.2023.107807_br0070","doi-asserted-by":"crossref","first-page":"59","DOI":"10.1016\/j.joca.2020.09.009","article-title":"Determining individual trajectories of joint space loss: improved statistical methods for monitoring knee osteoarthritis disease progression","volume":"29","author":"Parsons","year":"2021","journal-title":"Osteoarthr. Cartil."},{"key":"10.1016\/j.cmpb.2023.107807_br0080","doi-asserted-by":"crossref","first-page":"1433","DOI":"10.1002\/acr.20247","article-title":"Do worsening knee radiographs mean greater chances of severe functional limitation?","volume":"62","author":"White","year":"2010","journal-title":"Arthritis Care Res."},{"key":"10.1016\/j.cmpb.2023.107807_br0090","doi-asserted-by":"crossref","first-page":"212","DOI":"10.1186\/ar3845","article-title":"Early diagnosis to enable early treatment of pre-osteoarthritis","volume":"14","author":"Chu","year":"2012","journal-title":"Arthritis Res. Ther."},{"key":"10.1016\/j.cmpb.2023.107807_br0100","doi-asserted-by":"crossref","first-page":"1886","DOI":"10.1007\/s11999-016-4732-4","article-title":"Classifications in brief: Kellgren-Lawrence classification of osteoarthritis","volume":"474","author":"Kohn","year":"2016","journal-title":"Clin. Orthop. Relat. Res."},{"key":"10.1016\/j.cmpb.2023.107807_br0110","doi-asserted-by":"crossref","first-page":"1421","DOI":"10.3899\/jrheum.151300","article-title":"Radiographic assessment of severe knee osteoarthritis: role of training and experience","volume":"43","author":"Klara","year":"2016","journal-title":"J. Rheumatol."},{"key":"10.1016\/j.cmpb.2023.107807_br0120","doi-asserted-by":"crossref","DOI":"10.1016\/j.joca.2006.11.009","article-title":"Atlas of individual radiographic features in osteoarthritis, revised","volume":"15","author":"Altman","year":"2007","journal-title":"Osteoarthr. Cartil."},{"key":"10.1016\/j.cmpb.2023.107807_br0130","doi-asserted-by":"crossref","DOI":"10.1038\/s41598-020-60989-1","article-title":"The association of diabetes with knee pain severity and distribution in people with knee osteoarthritis using data from the osteoarthritis initiative","volume":"10","author":"Alenazi","year":"2020","journal-title":"Sci. Rep."},{"year":"2022","author":"Kunze","journal-title":"Knee Surg. Sports Traumatol. Arthrosc.","article-title":"Radiographic findings involved in knee osteoarthritis progression are associated with pain symptom frequency and baseline disease severity: a population-level analysis using deep learning","key":"10.1016\/j.cmpb.2023.107807_br0140"},{"key":"10.1016\/j.cmpb.2023.107807_br0150","doi-asserted-by":"crossref","DOI":"10.1155\/2021\/4931437","article-title":"Emergence of deep learning in knee osteoarthritis diagnosis","volume":"2021","author":"Yeoh","year":"2021","journal-title":"Comput. Intell. Neurosci."},{"key":"10.1016\/j.cmpb.2023.107807_br0160","article-title":"Discovering knee osteoarthritis imaging features for diagnosis and prognosis: review of manual imaging grading and machine learning approaches","volume":"11","author":"Teoh","year":"2022","journal-title":"J. Healthc. Eng."},{"year":"2022","author":"Binvignat","article-title":"Use of machine learning in osteoarthritis research: a systematic literature review","series-title":"International Workshop on Machine Learning in Medical Imaging","key":"10.1016\/j.cmpb.2023.107807_br0170"},{"key":"10.1016\/j.cmpb.2023.107807_br0180","doi-asserted-by":"crossref","first-page":"781","DOI":"10.1007\/s00776-010-1545-2","article-title":"Normal and threshold values of radiographic parameters for knee osteoarthritis using a computer-assisted measuring system (koacad): the road study","volume":"15","author":"Oka","year":"2010","journal-title":"J. Orthop. Sci."},{"year":"2016","author":"Thomson","article-title":"Detecting osteophytes in radiographs of the knee to diagnose osteoarthritis","series-title":"International Workshop on Machine Learning in Medical Imaging","key":"10.1016\/j.cmpb.2023.107807_br0190"},{"key":"10.1016\/j.cmpb.2023.107807_br0200","doi-asserted-by":"crossref","first-page":"1079","DOI":"10.1007\/s11760-020-01645-z","article-title":"X-ray image analysis for automated knee osteoarthritis detection","volume":"14","author":"Saleem","year":"2020","journal-title":"Signal Image Video Process."},{"year":"2018","author":"Antony","series-title":"Automatic quantification of radiographic knee osteoarthritis severity and associated diagnostic features using deep convolutional neural networks","key":"10.1016\/j.cmpb.2023.107807_br0210"},{"key":"10.1016\/j.cmpb.2023.107807_br0220","doi-asserted-by":"crossref","first-page":"932","DOI":"10.3390\/diagnostics10110932","article-title":"Automatic grading of individual knee osteoarthritis features in plain radiographs using deep convolutional neural networks","volume":"10","author":"Tiulpin","year":"2020","journal-title":"Diagnostics"},{"key":"10.1016\/j.cmpb.2023.107807_br0230","doi-asserted-by":"crossref","first-page":"84","DOI":"10.1016\/j.compmedimag.2019.06.002","article-title":"Fully automatic knee osteoarthritis severity grading using deep neural networks with a novel ordinal loss","volume":"75","author":"Chen","year":"2019","journal-title":"Comput. Med. Imaging Graph."},{"key":"10.1016\/j.cmpb.2023.107807_br0240","article-title":"Interpretable and parameter optimized ensemble model for knee osteoarthritis assessment using radiographs","volume":"11","author":"Muhammad","year":"2021","journal-title":"Sci. Rep."},{"key":"10.1016\/j.cmpb.2023.107807_br0250","doi-asserted-by":"crossref","first-page":"2939","DOI":"10.3390\/diagnostics12122939","article-title":"Identifying severity grading of knee osteoarthritis from x-ray images using an efficient mixture of deep learning and machine learning models","volume":"12","author":"Ahmed","year":"2022","journal-title":"Diagnostics"},{"key":"10.1016\/j.cmpb.2023.107807_br0260","doi-asserted-by":"crossref","first-page":"1126","DOI":"10.3390\/life12081126","article-title":"Recognition of knee osteoarthritis (koa) using yolov2 and classification based on convolutional neural network","volume":"12","author":"Yunus","year":"2022","journal-title":"Life"},{"key":"10.1016\/j.cmpb.2023.107807_br0270","doi-asserted-by":"crossref","first-page":"603","DOI":"10.5312\/wjo.v13.i6.603","article-title":"Evaluation of artificial intelligence models for osteoarthritis of the knee using deep learning algorithms for orthopedic radiographs","volume":"13","author":"Tiwari","year":"2022","journal-title":"World J. Orthop."},{"key":"10.1016\/j.cmpb.2023.107807_br0280","doi-asserted-by":"crossref","first-page":"6189","DOI":"10.3390\/s21186189","article-title":"A novel hybrid approach based on deep cnn features to detect knee osteoarthritis","volume":"20","author":"Mahum","year":"2021","journal-title":"Sensors"},{"key":"10.1016\/j.cmpb.2023.107807_br0290","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s12891-021-04722-7","article-title":"Automating classification of osteoarthritis according to Kellgren-Lawrence in the knee using deep learning in an unfiltered adult population","volume":"22","author":"Olsson","year":"2021","journal-title":"BMC Musculoskelet. Disord."},{"key":"10.1016\/j.cmpb.2023.107807_br0300","series-title":"3rd International Conference on Learning Representations, ICLR 2015","first-page":"1","article-title":"Very deep convolutional networks for large-scale image recognition","author":"Karen","year":"2015"},{"key":"10.1016\/j.cmpb.2023.107807_br0310","series-title":"Proceedings of the 36th International Conference on Machine Learning","first-page":"6105","article-title":"Efficientnet: rethinking model scaling for convolutional neural networks","volume":"vol. 97","author":"Tan","year":"2019"},{"key":"10.1016\/j.cmpb.2023.107807_br0320","series-title":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"770","article-title":"Deep residual learning for image recognition","author":"He","year":"2016"},{"key":"10.1016\/j.cmpb.2023.107807_br0330","series-title":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"2261","article-title":"Densely connected convolutional networks","author":"Huang","year":"2017"},{"key":"10.1016\/j.cmpb.2023.107807_br0340","doi-asserted-by":"crossref","first-page":"611","DOI":"10.1007\/s13244-018-0639-9","article-title":"Convolutional neural networks: an overview and application in radiology","volume":"9","author":"Yamashita","year":"2018","journal-title":"Insights Imaging"},{"key":"10.1016\/j.cmpb.2023.107807_br0350","doi-asserted-by":"crossref","first-page":"112","DOI":"10.1016\/j.neucom.2019.10.008","article-title":"Impact of fully connected layers on performance of convolutional neural networks for image classification","volume":"378","author":"Basha","year":"2020","journal-title":"Neurocomputing"},{"key":"10.1016\/j.cmpb.2023.107807_br0360","doi-asserted-by":"crossref","first-page":"2241","DOI":"10.1049\/iet-ipr.2018.6656","article-title":"Accurate leukocoria predictor based on deep vgg-net cnn technique","volume":"14","author":"Subrahmanyeswara Rao","year":"2020","journal-title":"IET Image Process."},{"key":"10.1016\/j.cmpb.2023.107807_br0370","doi-asserted-by":"crossref","first-page":"5787","DOI":"10.1002\/mp.15852","article-title":"A vgg attention vision transformer network for benign and malignant classification of breast ultrasound images","volume":"49","author":"Qu","year":"2022","journal-title":"Med. Phys."},{"key":"10.1016\/j.cmpb.2023.107807_br0380","doi-asserted-by":"crossref","first-page":"870","DOI":"10.3390\/s20030870","article-title":"Real-time facial affective computing on mobile devices","volume":"20","author":"Guo","year":"2020","journal-title":"Sensors"},{"key":"10.1016\/j.cmpb.2023.107807_br0390","doi-asserted-by":"crossref","first-page":"1083","DOI":"10.1109\/TNNLS.2013.2287275","article-title":"Global and local structure preservation for feature selection","volume":"25","author":"Liu","year":"2013","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"author":"Lin","key":"10.1016\/j.cmpb.2023.107807_br0400"},{"key":"10.1016\/j.cmpb.2023.107807_br0410","series-title":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","first-page":"1","article-title":"Siamese-gap network for early detection of knee osteoarthritis","author":"Wang","year":"2022"},{"key":"10.1016\/j.cmpb.2023.107807_br0420","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41598-018-20132-7","article-title":"Automatic knee osteoarthritis diagnosis from plain radiographs: a deep learning-based approach","volume":"8","author":"Tiulpin","year":"2018","journal-title":"Sci. Rep."},{"key":"10.1016\/j.cmpb.2023.107807_br0430","doi-asserted-by":"crossref","first-page":"1002","DOI":"10.1016\/j.joca.2019.02.800","article-title":"Diagnosing osteoarthritis from t2 maps using deep learning: an analysis of the entire osteoarthritis initiative baseline cohort","volume":"27","author":"Pedoia","year":"2019","journal-title":"Osteoarthr. Cartil."},{"key":"10.1016\/j.cmpb.2023.107807_br0440","doi-asserted-by":"crossref","first-page":"422","DOI":"10.1016\/j.compag.2019.03.012","article-title":"Cucumber leaf disease identification with global pooling dilated convolutional neural network","volume":"162","author":"Zhang","year":"2019","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.cmpb.2023.107807_br0450","doi-asserted-by":"crossref","first-page":"5573","DOI":"10.1109\/ACCESS.2020.3046715","article-title":"A lightweight convolutional neural network for real-time facial expression detection","volume":"9","author":"Zhou","year":"2020","journal-title":"IEEE Access"},{"key":"10.1016\/j.cmpb.2023.107807_br0460","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","article-title":"Random forests","volume":"45","author":"Breiman","year":"2001","journal-title":"Mach. Learn."},{"key":"10.1016\/j.cmpb.2023.107807_br0470","doi-asserted-by":"crossref","first-page":"533","DOI":"10.1001\/jama.2016.7653","article-title":"Logistic regression relating patient characteristics to outcomes","volume":"316","author":"Tolles","year":"2016","journal-title":"JAMA"},{"key":"10.1016\/j.cmpb.2023.107807_br0480","series-title":"On the Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE","first-page":"986","article-title":"Knn model-based approach in classification","author":"Guo","year":"2003"},{"key":"10.1016\/j.cmpb.2023.107807_br0490","series-title":"2010 20th International Conference on Pattern Recognition","first-page":"3121","article-title":"The balanced accuracy and its posterior distribution","author":"Brodersen","year":"2010"},{"key":"10.1016\/j.cmpb.2023.107807_br0500","doi-asserted-by":"crossref","first-page":"385","DOI":"10.1016\/j.neucom.2016.02.038","article-title":"Category kappas for agreement between fuzzy classifications","volume":"194","author":"Warrens","year":"2016","journal-title":"Neurocomputing"},{"author":"Chollet","key":"10.1016\/j.cmpb.2023.107807_br0510"},{"key":"10.1016\/j.cmpb.2023.107807_br0520","doi-asserted-by":"crossref","first-page":"192","DOI":"10.1016\/j.jpeds.2021.08.071","article-title":"Clinical interpretation of self-reported pain scores in children with acute pain","volume":"240","author":"Tsze","year":"2022","journal-title":"J. Pediatr."},{"key":"10.1016\/j.cmpb.2023.107807_br0530","doi-asserted-by":"crossref","first-page":"574","DOI":"10.1002\/acr.22721","article-title":"Alternative methods for defining osteoarthritis and the impact on estimating prevalence in a US population-based survey","volume":"68","author":"Cisternas","year":"2016","journal-title":"Arthritis Care Res."},{"key":"10.1016\/j.cmpb.2023.107807_br0540","doi-asserted-by":"crossref","first-page":"869","DOI":"10.1002\/acr.23425","article-title":"Medical expenditures and earnings losses among US adults with arthritis in 2013","volume":"70","author":"Murphy","year":"2018","journal-title":"Arthritis Care Res."},{"key":"10.1016\/j.cmpb.2023.107807_br0550","series-title":"Computational Sciences and Artificial Intelligence in Industry","first-page":"177","article-title":"Validation of knee kl-classifying deep neural network with Finnish patient data","author":"Niinim\u00e4ki","year":"2022"},{"key":"10.1016\/j.cmpb.2023.107807_br0560","doi-asserted-by":"crossref","DOI":"10.1177\/19476035221098169","article-title":"Global variation in studies of articular cartilage procedures of the knee: a systematic review","volume":"13","author":"Steinmetz","year":"2022","journal-title":"Cartilage"},{"key":"10.1016\/j.cmpb.2023.107807_br0570","first-page":"334","article-title":"Towards safe weakly supervised learning","volume":"43","author":"Li","year":"2021","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.cmpb.2023.107807_br0580","doi-asserted-by":"crossref","first-page":"607","DOI":"10.1109\/TCDS.2020.2965166","article-title":"Improving the generalization ability of deep neural networks for cross-domain visual recognition","volume":"13","author":"Zheng","year":"2020","journal-title":"IEEE Trans. Cogn. Dev. Syst."},{"key":"10.1016\/j.cmpb.2023.107807_br0590","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.patrec.2021.03.007","article-title":"Leveraging recent advances in deep learning for audio-visual emotion recognition","volume":"146","author":"Schoneveld","year":"2021","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.cmpb.2023.107807_br0600","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1186\/s13640-022-00580-y","article-title":"Random cnn structure: tool to increase generalization ability in deep learning","volume":"2022","author":"Swiderski","year":"2022","journal-title":"EURASIP J. Image Video Process."}],"container-title":["Computer Methods and Programs in Biomedicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S016926072300473X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S016926072300473X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,10,28]],"date-time":"2024-10-28T13:34:23Z","timestamp":1730122463000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S016926072300473X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,12]]},"references-count":60,"alternative-id":["S016926072300473X"],"URL":"https:\/\/doi.org\/10.1016\/j.cmpb.2023.107807","relation":{},"ISSN":["0169-2607"],"issn-type":[{"type":"print","value":"0169-2607"}],"subject":[],"published":{"date-parts":[[2023,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Stratifying knee osteoarthritis features through multitask deep hybrid learning: Data from the osteoarthritis initiative","name":"articletitle","label":"Article Title"},{"value":"Computer Methods and Programs in Biomedicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cmpb.2023.107807","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"107807"}}