{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T05:42:28Z","timestamp":1740116548073,"version":"3.37.3"},"reference-count":69,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,7,31]],"date-time":"2023-07-31T00:00:00Z","timestamp":1690761600000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/100018693","name":"Horizon 2020","doi-asserted-by":"publisher","award":["826494"],"id":[{"id":"10.13039\/100018693","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100007601","name":"Horizon 2020","doi-asserted-by":"publisher","award":["PLG\/2022\/015627"],"id":[{"id":"10.13039\/501100007601","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.es","clinicalkey.com.au","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computer Methods and Programs in Biomedicine"],"published-print":{"date-parts":[[2023,11]]},"DOI":"10.1016\/j.cmpb.2023.107742","type":"journal-article","created":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T01:04:02Z","timestamp":1690851842000},"page":"107742","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":2,"special_numbering":"C","title":["A multiscale orchestrated computational framework to reveal emergent phenomena in neuroblastoma"],"prefix":"10.1016","volume":"241","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-3784-1140","authenticated-orcid":false,"given":"C.","family":"Borau","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-4152-2898","authenticated-orcid":false,"given":"K.Y.","family":"Wertheim","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-8324-5596","authenticated-orcid":false,"given":"S.","family":"Hervas-Raluy","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-7452-0437","authenticated-orcid":false,"given":"D.","family":"Sainz-DeMena","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-8801-8093","authenticated-orcid":false,"given":"D.","family":"Walker","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-3379-9042","authenticated-orcid":false,"given":"R.","family":"Chisholm","sequence":"additional","affiliation":[]},{"given":"P.","family":"Richmond","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-3862-0208","authenticated-orcid":false,"given":"V.","family":"Varella","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-2293-1530","authenticated-orcid":false,"given":"M.","family":"Viceconti","sequence":"additional","affiliation":[]},{"given":"A.","family":"Montero","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-4754-1720","authenticated-orcid":false,"given":"E.","family":"Gregori-Puigjan\u00e9","sequence":"additional","affiliation":[]},{"given":"J.","family":"Mestres","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-8473-5236","authenticated-orcid":false,"given":"M.","family":"Kasztelnik","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-9864-7683","authenticated-orcid":false,"given":"J.M.","family":"Garc\u00eda-Aznar","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"6419","key":"10.1016\/j.cmpb.2023.107742_bib0001","doi-asserted-by":"crossref","first-page":"1165","DOI":"10.1126\/science.aat6768","article-title":"A mechanistic classification of clinical phenotypes in neuroblastoma","volume":"362","author":"Ackermann","year":"2018","journal-title":"Science"},{"issue":"4","key":"10.1016\/j.cmpb.2023.107742_bib0002","doi-asserted-by":"crossref","first-page":"429","DOI":"10.1016\/0959-8049(95)00051-J","article-title":"Schwann cells in neuroblastoma","volume":"31","author":"Ambros","year":"1995","journal-title":"Eur. J. Cancer"},{"issue":"1","key":"10.1016\/j.cmpb.2023.107742_bib0003","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s41747-022-00276-y","article-title":"A practical solution to estimate the sample size required for clinical prediction models generated from observational research on data","volume":"6","author":"Baeza-Delgado","year":"2022","journal-title":"Eur. Radiol. Exp."},{"issue":"7","key":"10.1016\/j.cmpb.2023.107742_bib0004","doi-asserted-by":"crossref","first-page":"740","DOI":"10.1200\/JCO.2015.63.2042","article-title":"Assessment of Primary Site Response in Children With High-Risk Neuroblastoma: an International Multicenter Study","volume":"34","author":"Bagatell","year":"2016","journal-title":"J. Clin. Oncol."},{"key":"10.1016\/j.cmpb.2023.107742_bib0005","doi-asserted-by":"crossref","first-page":"81","DOI":"10.1200\/CCI.20.00092","article-title":"Development and Validation of a Prediction Model of Overall Survival in High-Risk Neuroblastoma Using Mechanistic Modeling of Metastasis","volume":"5","author":"Benzekry","year":"2021","journal-title":"JCO Clin. Cancer Inform."},{"key":"10.1016\/j.cmpb.2023.107742_bib0006","unstructured":"Berlin Institute of Health. (2020). Virtual Research Environment Architecture - BIH At Charit\u00e9. https:\/\/www.bihealth.org\/de\/translation\/netzwerk\/digitale-medizin\/bihcharite-virtual-research-environment\/virtual-research-environment-architecture."},{"issue":"1","key":"10.1016\/j.cmpb.2023.107742_bib0007","doi-asserted-by":"crossref","DOI":"10.1186\/s13059-020-01954-z","article-title":"Comprehensive assessment of computational algorithms in predicting cancer driver mutations","volume":"21","author":"Chen","year":"2020","journal-title":"Genome Biol."},{"issue":"8","key":"10.1016\/j.cmpb.2023.107742_bib0008","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s11538-022-01034-2","article-title":"Combining Mechanisms of Growth Arrest in Solid Tumours: a Mathematical Investigation","volume":"84","author":"Colson","year":"2022","journal-title":"Bull. Math. Biol."},{"issue":"1","key":"10.1016\/j.cmpb.2023.107742_bib0009","doi-asserted-by":"crossref","first-page":"79","DOI":"10.1016\/j.canlet.2015.11.025","article-title":"Boolean modeling identifies Greatwall\/MASTL as an important regulator in the AURKA network of neuroblastoma","volume":"371","author":"Dahlhaus","year":"2016","journal-title":"Cancer Lett."},{"key":"10.1016\/j.cmpb.2023.107742_bib0010","doi-asserted-by":"crossref","DOI":"10.1016\/j.jtbi.2022.111173","article-title":"A theoretical analysis of the scale separation in a model to predict solid tumour growth","volume":"547","author":"de Melo Quintela","year":"2022","journal-title":"J. Theor. Biol."},{"issue":"6","key":"10.1016\/j.cmpb.2023.107742_bib0011","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pcbi.1009066","article-title":"BIO-LGCA: a cellular automaton modelling class for analysing collective cell migration","volume":"17","author":"Deutsch","year":"2021","journal-title":"PLoS Comput. Biol."},{"issue":"8","key":"10.1016\/j.cmpb.2023.107742_bib0012","doi-asserted-by":"crossref","first-page":"1953","DOI":"10.1007\/s11538-014-9987-x","article-title":"The resolution of inflammation: a mathematical model of neutrophil and macrophage interactions","volume":"76","author":"Dunster","year":"2014","journal-title":"Bull. Math. Biol."},{"key":"10.1016\/j.cmpb.2023.107742_bib0013","unstructured":"FLAME GPU. (n.d.). Retrieved March 10, 2023, from https:\/\/flamegpu.com\/."},{"issue":"1","key":"10.1016\/j.cmpb.2023.107742_bib0014","doi-asserted-by":"crossref","first-page":"40","DOI":"10.1111\/febs.15767","article-title":"The guardian's choice: how p53 enables context-specific decision-making in individual cells","volume":"289","author":"Friedel","year":"2022","journal-title":"FEBS J."},{"issue":"5","key":"10.1016\/j.cmpb.2023.107742_bib0015","doi-asserted-by":"crossref","first-page":"3173","DOI":"10.1007\/s00330-021-08431-6","article-title":"Bridging gaps between images and data: a systematic update on imaging biobanks","volume":"32","author":"Gabelloni","year":"2022","journal-title":"Eur. Radiol."},{"issue":"11","key":"10.1016\/j.cmpb.2023.107742_bib0016","doi-asserted-by":"crossref","first-page":"675","DOI":"10.1038\/s41571-020-0411-1","article-title":"Integrating evolutionary dynamics into cancer therapy","volume":"17","author":"Gatenby","year":"2020","journal-title":"Nat. Rev. Clin. Oncol."},{"issue":"10","key":"10.1016\/j.cmpb.2023.107742_bib0017","doi-asserted-by":"crossref","DOI":"10.3390\/children5100142","article-title":"Molecularly Targeted Therapy for Neuroblastoma","volume":"5","author":"Greengard","year":"2018","journal-title":"Children"},{"issue":"1","key":"10.1016\/j.cmpb.2023.107742_bib0018","doi-asserted-by":"crossref","first-page":"37","DOI":"10.1007\/BF00582204","article-title":"Oxygen diffusivity in tumor tissue (DS-Carcinosarcoma) under temperature conditions within the range of 20\u201340\u00b0C","volume":"372","author":"Grote","year":"1977","journal-title":"Pflugers Arch."},{"issue":"13","key":"10.1016\/j.cmpb.2023.107742_bib0019","doi-asserted-by":"crossref","first-page":"5597","DOI":"10.1021\/jp952903y","article-title":"Temperature Dependence of Oxygen Diffusion in H2O and D2O\u2020","volume":"100","author":"Han","year":"1996","journal-title":"J. Phys. Chem."},{"issue":"8","key":"10.1016\/j.cmpb.2023.107742_bib0020","doi-asserted-by":"crossref","first-page":"2026","DOI":"10.1007\/s11538-018-0441-3","article-title":"Predictive Modeling of Neuroblastoma Growth Dynamics in Xenograft Model After Bevacizumab Anti-VEGF Therapy","volume":"80","author":"He","year":"2018","journal-title":"Bull. Math. Biol."},{"issue":"1","key":"10.1016\/j.cmpb.2023.107742_bib0021","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s13062-018-0219-4","article-title":"Models of cell signaling uncover molecular mechanisms of high-risk neuroblastoma and predict disease outcome","volume":"13","author":"Hidalgo","year":"2018","journal-title":"Biol. Direct"},{"issue":"1","key":"10.1016\/j.cmpb.2023.107742_bib0022","first-page":"13","article-title":"Models of cell signaling uncover molecular mechanisms of high-risk neuroblastoma and predict disease outcome","author":"Hidalgo","year":"2018","journal-title":"Biol. Direct"},{"issue":"1","key":"10.1016\/j.cmpb.2023.107742_bib0023","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41598-020-64162-6","article-title":"Non-invasive imaging of Young's modulus and Poisson's ratio in cancers in vivo","volume":"10","author":"Islam","year":"2020","journal-title":"Sci. Rep."},{"issue":"2","key":"10.1016\/j.cmpb.2023.107742_bib0024","doi-asserted-by":"crossref","DOI":"10.1088\/1478-3975\/ac509c","article-title":"Optimal chemotherapy counteracts cancer adaptive resistance in a cell-based, spatially-extended, evolutionary model","volume":"19","author":"Italia","year":"2022","journal-title":"Phys. Biol."},{"issue":"7","key":"10.1016\/j.cmpb.2023.107742_bib0025","doi-asserted-by":"crossref","first-page":"1986","DOI":"10.3390\/cancers15071986","article-title":"Mathematical Model of Clonal Evolution Proposes a Personalised Multi-Modal Therapy for High-Risk Neuroblastoma","volume":"15","author":"Italia","year":"2023","journal-title":"Cancers"},{"issue":"14","key":"10.1016\/j.cmpb.2023.107742_bib0026","doi-asserted-by":"crossref","first-page":"2663","DOI":"10.1007\/s00018-019-03097-2","article-title":"Computational Algorithms for In Silico Profiling of Activating Mutations in Cancer","volume":"76","author":"Jordan","year":"2019","journal-title":"Cell. Mol. Life Sci."},{"issue":"8","key":"10.1016\/j.cmpb.2023.107742_bib0027","first-page":"11","article-title":"Digital Twins: from Personalised Medicine to Precision Public Health","author":"Kamel Boulos","year":"2021","journal-title":"J. Pers. Med."},{"issue":"5","key":"10.1016\/j.cmpb.2023.107742_bib0028","doi-asserted-by":"crossref","first-page":"694","DOI":"10.1038\/s41588-021-00818-x","article-title":"Single-cell transcriptomics of human embryos identifies multiple sympathoblast lineages with potential implications for neuroblastoma origin","volume":"53","author":"Kameneva","year":"2021","journal-title":"Nat. Genet."},{"issue":"20","key":"10.1016\/j.cmpb.2023.107742_bib0029","first-page":"20","article-title":"Mathematical Modeling of p53 Pathways","author":"Kim","year":"2019","journal-title":"Int. J. Mol. Sci."},{"key":"10.1016\/j.cmpb.2023.107742_bib0030","doi-asserted-by":"crossref","unstructured":"Kitowski, J., Tura\u0142a, M., Wiatr, K., Dutka, \u0141., Bubak, M., Szepieniec, T., Radecki, M., Sterzel, M., Mosurska, Z., Paja\u0327k, R., S\u0142ota, R., Kurowski, K., Palak, B., Balcerek, B., Ba\u0142a, P., Filocha, M., & Tylman, R. (2012). Polish computational research space for international scientific collaborations. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7203 LNCS(PART 1), 317\u2013326. 10.1007\/978-3-642-31464-3_32\/COVER.","DOI":"10.1007\/978-3-642-31464-3_32"},{"issue":"1","key":"10.1016\/j.cmpb.2023.107742_bib0031","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41746-022-00610-z","article-title":"Building digital twins of the human immune system: toward a roadmap","volume":"5","author":"Laubenbacher","year":"2022","journal-title":"NPJ Digital Med."},{"key":"10.1016\/j.cmpb.2023.107742_bib0032","article-title":"Improved risk stratification by PET-based intratumor heterogeneity in children with high-risk neuroblastoma","volume":"12","author":"Li","year":"2022","journal-title":"Front. Oncol."},{"issue":"11","key":"10.1016\/j.cmpb.2023.107742_bib0033","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pcbi.1008845","article-title":"Bayesian calibration of a stochastic, multiscale agent-based model for predicting in vitro tumor growth","volume":"17","author":"Lima","year":"2021","journal-title":"PLoS Comput. Biol."},{"issue":"9","key":"10.1016\/j.cmpb.2023.107742_bib0034","doi-asserted-by":"crossref","first-page":"221","DOI":"10.3390\/brainsci9090221","article-title":"Prediction of PD-L1 Expression in Neuroblastoma via Computational Modeling","volume":"9","author":"Lombardo","year":"2019","journal-title":"Brain Sci."},{"issue":"9","key":"10.1016\/j.cmpb.2023.107742_bib0035","doi-asserted-by":"crossref","DOI":"10.3390\/brainsci9090221","article-title":"Prediction of PD-L1 Expression in Neuroblastoma via Computational Modeling","volume":"9","author":"Lombardo","year":"2019","journal-title":"Brain Sci."},{"issue":"1","key":"10.1016\/j.cmpb.2023.107742_bib0036","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s41747-020-00150-9","article-title":"PRIMAGE project: predictive in silico multiscale analytics to support childhood cancer personalised evaluation empowered by imaging biomarkers","volume":"4","author":"Mart\u00ed-Bonmat\u00ed","year":"2020","journal-title":"Eur. Radiol. Exp."},{"issue":"1","key":"10.1016\/j.cmpb.2023.107742_bib0037","doi-asserted-by":"crossref","first-page":"16078","DOI":"10.1038\/nrdp.2016.78","article-title":"Neuroblastoma","volume":"2","author":"Matthay","year":"2016","journal-title":"Nat. Rev. Dis. Primers"},{"issue":"D1","key":"10.1016\/j.cmpb.2023.107742_bib0038","doi-asserted-by":"crossref","first-page":"D930","DOI":"10.1093\/nar\/gky1075","article-title":"ChEMBL: towards direct deposition of bioassay data","volume":"47","author":"Mendez","year":"2019","journal-title":"Nucleic Acids Res."},{"issue":"3","key":"10.1016\/j.cmpb.2023.107742_bib0039","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1200\/CCI.18.00069","article-title":"A Review of Cell-Based Computational Modeling in Cancer Biology","volume":"3","author":"Metzcar","year":"2019","journal-title":"JCO Clin. Cancer Inform."},{"key":"10.1016\/j.cmpb.2023.107742_bib0040","doi-asserted-by":"crossref","first-page":"52","DOI":"10.1016\/j.ejca.2020.05.010","article-title":"Accelerating drug development for neuroblastoma: summary of the Second Neuroblastoma Drug Development Strategy forum from Innovative Therapies for Children with Cancer and International Society of Paediatric Oncology Europe Neuroblastoma","volume":"136","author":"Moreno","year":"2020","journal-title":"Eur. J. Cancer (Oxford, England\u00a0: 1990)"},{"issue":"6","key":"10.1016\/j.cmpb.2023.107742_bib0041","doi-asserted-by":"crossref","first-page":"1391","DOI":"10.1007\/s10237-015-0682-0","article-title":"Stress-mediated progression of solid tumors: effect of mechanical stress on tissue oxygenation, cancer cell proliferation, and drug delivery","volume":"14","author":"Mpekris","year":"2015","journal-title":"Biomech. Model. Mechanobiol."},{"key":"10.1016\/j.cmpb.2023.107742_bib0042","doi-asserted-by":"crossref","first-page":"83","DOI":"10.2147\/HP.S93413","article-title":"The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy","volume":"3","author":"Muz","year":"2015","journal-title":"Hypoxia"},{"key":"10.1016\/j.cmpb.2023.107742_bib0043","doi-asserted-by":"crossref","first-page":"169","DOI":"10.1016\/j.jocs.2017.06.012","article-title":"Cloud computing infrastructure for the VPH community","volume":"24","author":"Nowakowski","year":"2018","journal-title":"J. Comput. Sci."},{"issue":"3","key":"10.1016\/j.cmpb.2023.107742_bib0044","first-page":"15","article-title":"Review: precision medicine and driver mutations: computational methods, functional assays and conformational principles for interpreting cancer drivers","author":"Nussinov","year":"2019","journal-title":"PLoS Comput. Biol."},{"issue":"4","key":"10.1016\/j.cmpb.2023.107742_bib0045","doi-asserted-by":"crossref","first-page":"563","DOI":"10.1002\/pbc.22106","article-title":"Clinicopathological characteristics of ganglioneuroma and ganglioneuroblastoma: a report from the CCG and COG","volume":"53","author":"Okamatsu","year":"2009","journal-title":"Pediatr. Blood. Cancer"},{"issue":"1","key":"10.1016\/j.cmpb.2023.107742_bib0046","doi-asserted-by":"crossref","first-page":"134","DOI":"10.1016\/j.jconrel.2012.06.012","article-title":"The kinetics of blood brain barrier permeability and targeted doxorubicin delivery into brain induced by focused ultrasound","volume":"162","author":"Park","year":"2012","journal-title":"J. Control. Release"},{"key":"10.1016\/j.cmpb.2023.107742_bib0047","unstructured":"Project | CHIC. (2017). https:\/\/chic-vph.eu\/project\/."},{"issue":"8","key":"10.1016\/j.cmpb.2023.107742_bib0048","doi-asserted-by":"crossref","first-page":"515","DOI":"10.1038\/s41571-022-00643-z","article-title":"Advancing therapy for neuroblastoma","volume":"19","author":"Qiu","year":"2022","journal-title":"Nat. Rev. Clin. Oncol."},{"issue":"22","key":"10.1016\/j.cmpb.2023.107742_bib0049","doi-asserted-by":"crossref","first-page":"11557","DOI":"10.3390\/app122211557","article-title":"Im2mesh: a Python Library to Reconstruct 3D Meshes from Scattered Data and 2D Segmentations, Application to Patient-Specific Neuroblastoma Tumour Image Sequences","volume":"12","author":"Sainz-Demena","year":"2022","journal-title":"Appl. Sci."},{"issue":"5","key":"10.1016\/j.cmpb.2023.107742_bib0050","doi-asserted-by":"crossref","first-page":"3849","DOI":"10.1007\/s00366-022-01667-w","article-title":"A finite element based optimization algorithm to include diffusion into the analysis of DCE-MRI","volume":"38","author":"Sainz-DeMena","year":"2022","journal-title":"Eng. Comput."},{"issue":"2","key":"10.1016\/j.cmpb.2023.107742_bib0051","first-page":"349","article-title":"Terminology and morphologic criteria of neuroblastic tumors: recommendations by the International Neuroblastoma Pathology Committee","volume":"86","author":"Shimada","year":"1999","journal-title":"Cancer Interdisciplin. Int. J. Am. Cancer Soc."},{"issue":"3","key":"10.1016\/j.cmpb.2023.107742_bib0052","doi-asserted-by":"crossref","DOI":"10.1002\/cnm.3315","article-title":"A four-compartment multiscale model of fluid and drug distribution in vascular tumours","volume":"36","author":"Shipley","year":"2020","journal-title":"Int. J. Numer. Method Biomed. Eng."},{"issue":"3","key":"10.1016\/j.cmpb.2023.107742_bib0053","doi-asserted-by":"crossref","first-page":"147","DOI":"10.1055\/s-2005-836518","article-title":"2017 GPOH Guidelines for Diagnosis and Treatment of Patients with Neuroblastic Tumors","volume":"229","author":"Simon","year":"2017","journal-title":"Klin. Padiatr."},{"issue":"9","key":"10.1016\/j.cmpb.2023.107742_bib0054","doi-asserted-by":"crossref","DOI":"10.3390\/children5090114","article-title":"High-Risk Neuroblastoma Treatment Review","volume":"5","author":"Smith","year":"2018","journal-title":"Children"},{"issue":"3","key":"10.1016\/j.cmpb.2023.107742_bib0055","doi-asserted-by":"crossref","first-page":"671","DOI":"10.3390\/cells9030671","article-title":"Immune clearance of senescent cells to combat ageing and chronic diseases","volume":"9","author":"Song","year":"2020","journal-title":"Cells"},{"issue":"2","key":"10.1016\/j.cmpb.2023.107742_bib0056","doi-asserted-by":"crossref","first-page":"357","DOI":"10.1002\/mrm.1910170208","article-title":"Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts","volume":"17","author":"Tofts","year":"1991","journal-title":"Magn. Reson. Med."},{"issue":"2","key":"10.1016\/j.cmpb.2023.107742_bib0057","doi-asserted-by":"crossref","first-page":"195","DOI":"10.1007\/s00441-018-2821-2","article-title":"Neuroblastoma: clinical and Biological Approach to Risk Stratification and Treatment","volume":"372","author":"Tolbert","year":"2018","journal-title":"Cell Tissue Res."},{"key":"10.1016\/j.cmpb.2023.107742_bib0058","doi-asserted-by":"crossref","DOI":"10.1158\/1078-0432.CCR-22-2274","article-title":"Combination Therapies Targeting Alk-Aberrant Neuroblastoma in Preclinical Models","author":"Tucker","year":"2023","journal-title":"Clin. Cancer Res."},{"issue":"15","key":"10.1016\/j.cmpb.2023.107742_bib0059","doi-asserted-by":"crossref","first-page":"3648","DOI":"10.3390\/cancers14153648","article-title":"Comparative Multicentric Evaluation of Inter-Observer Variability in Manual and Automatic Segmentation of Neuroblastic Tumors in Magnetic Resonance Images","volume":"14","author":"Veiga-Canuto","year":"2022","journal-title":"Cancers"},{"issue":"1","key":"10.1016\/j.cmpb.2023.107742_bib0060","doi-asserted-by":"crossref","first-page":"4","DOI":"10.1109\/JBHI.2019.2949888","article-title":"Credibility of in Silico Trial Technologies-A Theoretical Framing","volume":"24","author":"Viceconti","year":"2020","journal-title":"IEEE J. Biomed. Health Inf."},{"key":"10.1016\/j.cmpb.2023.107742_bib0061","doi-asserted-by":"crossref","first-page":"489","DOI":"10.1007\/978-1-60761-839-3_19","article-title":"Ligand-based approaches to in silico pharmacology","volume":"672","author":"Vidal","year":"2011","journal-title":"Methods Mol. Biol."},{"issue":"14","key":"10.1016\/j.cmpb.2023.107742_bib0062","doi-asserted-by":"crossref","first-page":"2779","DOI":"10.1002\/cam4.4653","article-title":"Prognostic impact of tumor size on patients with neuroblastoma in a SEER-based study","volume":"11","author":"Wang","year":"2022","journal-title":"Cancer Med."},{"issue":"3","key":"10.1016\/j.cmpb.2023.107742_bib0063","doi-asserted-by":"crossref","DOI":"10.3390\/cells12030490","article-title":"Encoding and Decoding of p53 Dynamics in Cellular Response to Stresses","volume":"12","author":"Wang","year":"2023","journal-title":"Cells"},{"key":"10.1016\/j.cmpb.2023.107742_bib0064","unstructured":"Weir, P., Ellerweg, R., Payne, S., Reuter, D., Alhonnoro, T., Voglreiter, P., Mariappan, P., Pollari, M., Park, C.S., Voigt, P., van Oostenbrugge, T., Fischer, S., Kalmar, P., Futterer, J., Stiegler, P., Zangos, S., Flanagan, R., Moche, M., & Kolesnik, M. (2016). Go-Smart: open-Ended, Web-Based Modelling of Minimally Invasive Cancer Treatments via a Clinical Domain Approach. https:\/\/www.researchgate.net\/publication\/324081147_Go-Smart_Open-Ended_Web-Based_Modelling_of_Minimally_Invasive_Cancer_Treatments_via_a_Clinical_Domain_Approach?channel=doi&linkId=5abcc6f30f7e9bfc04561b81&showFulltext=true."},{"issue":"1","key":"10.1016\/j.cmpb.2023.107742_bib0065","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41467-021-21859-0","article-title":"Schwann cell plasticity regulates neuroblastic tumor cell differentiation via epidermal growth factor-like protein 8","volume":"12","author":"Weiss","year":"2021","journal-title":"Nat. Commun."},{"issue":"8","key":"10.1016\/j.cmpb.2023.107742_bib0066","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pcbi.1009209","article-title":"A multi-approach and multi-scale platform to model CD4+ T cells responding to infections","volume":"17","author":"Wertheim","year":"2021","journal-title":"PLoS Comput. Biol."},{"key":"10.1016\/j.cmpb.2023.107742_bib0067","doi-asserted-by":"crossref","first-page":"123","DOI":"10.1016\/j.ejca.2020.11.014","article-title":"The immune landscape of neuroblastoma: challenges and opportunities for novel therapeutic strategies in pediatric oncology","volume":"144","author":"Wienke","year":"2021","journal-title":"Eur. J. Cancer"},{"key":"10.1016\/j.cmpb.2023.107742_bib0068","doi-asserted-by":"crossref","first-page":"16","DOI":"10.1016\/j.canlet.2020.09.023","article-title":"Targeting the p53-MDM2 Pathway for Neuroblastoma Therapy: rays of Hope","volume":"496","author":"Zafar","year":"2021","journal-title":"Cancer Lett."},{"issue":"12","key":"10.1016\/j.cmpb.2023.107742_bib0069","doi-asserted-by":"crossref","first-page":"4406","DOI":"10.1096\/fj.11-192815","article-title":"p73 protein regulates DNA damage repair","volume":"25","author":"Zaika","year":"2011","journal-title":"FASEB J."}],"container-title":["Computer Methods and Programs in Biomedicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S016926072300408X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S016926072300408X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,1,22]],"date-time":"2024-01-22T21:26:16Z","timestamp":1705958776000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S016926072300408X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,11]]},"references-count":69,"alternative-id":["S016926072300408X"],"URL":"https:\/\/doi.org\/10.1016\/j.cmpb.2023.107742","relation":{},"ISSN":["0169-2607"],"issn-type":[{"type":"print","value":"0169-2607"}],"subject":[],"published":{"date-parts":[[2023,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A multiscale orchestrated computational framework to reveal emergent phenomena in neuroblastoma","name":"articletitle","label":"Article Title"},{"value":"Computer Methods and Programs in Biomedicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cmpb.2023.107742","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 The Author(s). Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"107742"}}