{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T04:38:50Z","timestamp":1725943130650},"reference-count":94,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,10,1]],"date-time":"2023-10-01T00:00:00Z","timestamp":1696118400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,10,1]],"date-time":"2023-10-01T00:00:00Z","timestamp":1696118400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"}],"funder":[{"DOI":"10.13039\/501100000038","name":"Natural Sciences and Engineering Research Council of Canada","doi-asserted-by":"publisher","award":["RGPIN-2019\u201306467"],"id":[{"id":"10.13039\/501100000038","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.es","clinicalkey.com.au","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computer Methods and Programs in Biomedicine"],"published-print":{"date-parts":[[2023,10]]},"DOI":"10.1016\/j.cmpb.2023.107714","type":"journal-article","created":{"date-parts":[[2023,7,8]],"date-time":"2023-07-08T01:00:40Z","timestamp":1688778040000},"page":"107714","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":35,"special_numbering":"C","title":["Fusion-based tensor radiomics using reproducible features: Application to survival prediction in head and neck cancer"],"prefix":"10.1016","volume":"240","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-9515-789X","authenticated-orcid":false,"given":"Mohammad R.","family":"Salmanpour","sequence":"first","affiliation":[]},{"given":"Mahdi","family":"Hosseinzadeh","sequence":"additional","affiliation":[]},{"given":"Seyed Masoud","family":"Rezaeijo","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9980-2403","authenticated-orcid":false,"given":"Arman","family":"Rahmim","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"year":"2020","series-title":"The Image Biomarker Standardization initiative: Standardized quantitative Radiomics For High-Throughput Image-Based Phenotyping","author":"Zwanenburg","key":"10.1016\/j.cmpb.2023.107714_bib0001"},{"key":"10.1016\/j.cmpb.2023.107714_bib0002","doi-asserted-by":"crossref","first-page":"328","DOI":"10.1148\/radiol.2020191145","article-title":"Image biomarker standardisation initiative","volume":"295","author":"Zwanenburg","year":"2020","journal-title":"Radiology"},{"year":"2021","series-title":"Radiomics in PET Imaging:: A Practical Guide for Newcomers","author":"Orlhac","key":"10.1016\/j.cmpb.2023.107714_bib0003"},{"key":"10.1016\/j.cmpb.2023.107714_bib0004","first-page":"1","article-title":"Prediction of Drug Amount in Parkinson's Disease using Hybrid Machine Learning Systems and Radiomics Features","author":"Salmanpour","year":"2023","journal-title":"Int. J. Imaging Syst. Technol."},{"issue":"1","key":"10.1016\/j.cmpb.2023.107714_bib0005","doi-asserted-by":"crossref","first-page":"19679","DOI":"10.1038\/s41598-020-76310-z","article-title":"The importance of feature aggregation in radiomics: a head and neck cancer study","volume":"10","author":"Fontaine","year":"2020","journal-title":"Sci. Rep."},{"key":"10.1016\/j.cmpb.2023.107714_bib0006","doi-asserted-by":"crossref","first-page":"749","DOI":"10.1038\/nrclinonc.2017.141","article-title":"Radiomics: the bridge between medical imaging and personalized medicine","volume":"14","author":"Lambin","year":"2017","journal-title":"Nat. Rev. Clin. Oncol."},{"issue":"5","key":"10.1016\/j.cmpb.2023.107714_bib0007","doi-asserted-by":"crossref","first-page":"1303","DOI":"10.7150\/thno.30309","article-title":"The Applications of Radiomics in Precision Diagnosis and Treatment of Oncology: opportunities and Challenges","volume":"9","author":"Liu","year":"2019","journal-title":"Theranostics"},{"issue":"1","key":"10.1016\/j.cmpb.2023.107714_bib90","first-page":"1429","article-title":"Hybrid machine learning methods for robust identification of Parkinson\u2019s disease subtypes","volume":"61","author":"Salmanpour","year":"2020","journal-title":"J. Nucl. Med."},{"key":"10.1016\/j.cmpb.2023.107714_bib0008","doi-asserted-by":"crossref","first-page":"1049","DOI":"10.1007\/s00330-020-07141-9","article-title":"Radiomics in predicting treatment response in non-small-cell lung cancer: current status, challenges and future perspectives","volume":"31","author":"Chetan","year":"2021","journal-title":"Eur. Radiol."},{"issue":"4","key":"10.1016\/j.cmpb.2023.107714_bib0009","doi-asserted-by":"crossref","first-page":"1143","DOI":"10.1016\/j.ijrobp.2018.05.053","article-title":"Repeatability and Reproducibility of Radiomic Features: a Systematic Review","volume":"102","author":"Traverso","year":"2018","journal-title":"Int. J. Radiat. Oncol. Biol. Phys."},{"issue":"10","key":"10.1016\/j.cmpb.2023.107714_bib0010","doi-asserted-by":"crossref","first-page":"4431","DOI":"10.21037\/qims-21-86","article-title":"Radiomics feature reliability assessed by intraclass correlation coefficient: a systematic review","volume":"11","author":"Xue","year":"2021","journal-title":"Quant. Imaging Med. Surg."},{"key":"10.1016\/j.cmpb.2023.107714_bib0011","doi-asserted-by":"crossref","unstructured":"M.R. Salmanpour, G. Hajianfar and et\u00a0al., \"Advanced Automatic Segmentation of Tumors and Survival Prediction in Head and Neck Cancer,\" Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 13209 LNCS, no. 1, pp. 202\u2013210, 2022.","DOI":"10.1007\/978-3-030-98253-9_19"},{"key":"10.1016\/j.cmpb.2023.107714_bib0012","doi-asserted-by":"crossref","first-page":"1234","DOI":"10.1016\/j.mri.2012.06.010","article-title":"Radiomics: the process and the challenges","volume":"30","author":"Kumar","year":"2012","journal-title":"Magn. Reson. Imaging"},{"key":"10.1016\/j.cmpb.2023.107714_bib0013","doi-asserted-by":"crossref","first-page":"169","DOI":"10.1038\/nrclinonc.2016.162","article-title":"Imaging biomarker roadmap for cancer studies","volume":"14","author":"O'Connor","year":"2017","journal-title":"Nat Rev Clin Oncol"},{"issue":"8","key":"10.1016\/j.cmpb.2023.107714_bib0014","first-page":"598","article-title":"A Review of Image Fusion Methods","volume":"3","author":"Taxak","year":"2018","journal-title":"Int. J. Innov. Sci. Res. Technol."},{"key":"10.1016\/j.cmpb.2023.107714_bib0015","doi-asserted-by":"crossref","first-page":"4","DOI":"10.1016\/j.inffus.2013.12.002","article-title":"Medical image fusion: a survey of the state of the art","volume":"19","author":"Pappachen James","year":"2014","journal-title":"Inf. Fus."},{"key":"10.1016\/j.cmpb.2023.107714_bib0016","doi-asserted-by":"crossref","unstructured":"M. Fatan, M. Hosseinzadeh and et\u00a0al., \"Fusion-Based Head and Neck Tumor Segmentation and Survival Prediction Using Robust Deep Learning Techniques and Advanced Hybrid Machine Learning Systems,\" Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 13209 LNCS, pp. 211\u2013223, 2022.","DOI":"10.1007\/978-3-030-98253-9_20"},{"key":"10.1016\/j.cmpb.2023.107714_bib0017","doi-asserted-by":"crossref","first-page":"469","DOI":"10.1016\/B978-0-12-372529-5.00017-2","article-title":"Performance evaluation of image fusion techniques","author":"Wang","year":"2008","journal-title":"Image Fus."},{"key":"10.1016\/j.cmpb.2023.107714_bib0018","series-title":"EANM","article-title":"Reliable and Reproducible Tensor Radiomics Features in Prediction of Survival in Head and Neck Cancer","author":"Salmanpour","year":"2022"},{"key":"10.1016\/j.cmpb.2023.107714_bib0019","doi-asserted-by":"crossref","unstructured":"A. Rahmim, A. Toosi and et\u00a0al., \"Tensor Radiomics: paradigm for Systematic Incorporation of Multi-Flavoured Radiomics Features,\" arXiv preprint arXiv:2203.06314, 3 2022.","DOI":"10.2139\/ssrn.4127717"},{"key":"10.1016\/j.cmpb.2023.107714_bib0020","doi-asserted-by":"crossref","first-page":"74","DOI":"10.1016\/j.breast.2019.10.018","article-title":"Overview of radiomics in breast cancer diagnosis and prognostication","volume":"49","author":"Tagliafico","year":"2020","journal-title":"The Breast"},{"key":"10.1016\/j.cmpb.2023.107714_bib0021","doi-asserted-by":"crossref","first-page":"238","DOI":"10.1016\/j.semcancer.2020.04.002","article-title":"Radiomics in breast cancer classification and prediction","volume":"72","author":"Conti","year":"2021","journal-title":"Semin. Cancer Biol."},{"key":"10.1016\/j.cmpb.2023.107714_bib0022","series-title":"Medical Imaging 2022: Computer-Aided Diagnosis","first-page":"114","article-title":"Prediction of TNM stage in head and neck cancer using hybrid machine learning systems and radiomics features","volume":"12033","author":"Salmanpour","year":"2022"},{"key":"10.1016\/j.cmpb.2023.107714_bib0024","doi-asserted-by":"crossref","first-page":"22","DOI":"10.3389\/fradi.2022.919133","article-title":"AutoRadiomics: a Framework for Reproducible Radiomics Research","volume":"2","author":"Woznicki","year":"2022","journal-title":"Front. Radiol."},{"key":"10.1016\/j.cmpb.2023.107714_bib0025","doi-asserted-by":"crossref","first-page":"5843","DOI":"10.1007\/s00330-022-08662-1","article-title":"Reproducibility of radiomics features from ultrasound images: influence of image acquisition and processing","volume":"32","author":"Li","year":"2022","journal-title":"Eur. Radiol."},{"key":"10.1016\/j.cmpb.2023.107714_bib0026","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0124165","article-title":"False discovery rates in PET and CT studies with texture features: a systematic review","volume":"10","author":"Chalkidou","year":"2015","journal-title":"PLoS ONE"},{"key":"10.1016\/j.cmpb.2023.107714_bib94","doi-asserted-by":"crossref","first-page":"106131","DOI":"10.1016\/j.cmpb.2021.106131","article-title":"Feature selection and machine learning methods for optimal identification and prediction of subtypes in Parkinson\u2019s disease","volume":"206","author":"Shamsaei","year":"2021","journal-title":"Compu.t Methods Programs Biomed."},{"issue":"2","key":"10.1016\/j.cmpb.2023.107714_bib95","doi-asserted-by":"crossref","first-page":"906","DOI":"10.21037\/qims-21-425","article-title":"Longitudinal clustering analysis and prediction of Parkinson\u2019s disease progression using radiomics and hybrid machine learning","volume":"12","author":"Shamsaei","year":"2022","journal-title":"Quant. Imaging Med. Surg."},{"key":"10.1016\/j.cmpb.2023.107714_bib0027","doi-asserted-by":"crossref","first-page":"e57105","DOI":"10.1371\/journal.pone.0057105","article-title":"Predicting future morphological changes of lesions from radiotracer uptake in 18F-FDG-PET images","volume":"8","author":"Bagci","year":"2013","journal-title":"PLoS ONE"},{"key":"10.1016\/j.cmpb.2023.107714_bib0028","doi-asserted-by":"crossref","first-page":"414","DOI":"10.2967\/jnumed.113.129858","article-title":"Tumor texture analysis in 18F-FDG PET: relationships between texture parameters, histogram indices, standardized uptake values, metabolic volumes, and total lesion glycolysis","volume":"55","author":"Orlhac","year":"2014","journal-title":"J. Nucl. Med."},{"issue":"1070","key":"10.1016\/j.cmpb.2023.107714_bib0029","doi-asserted-by":"crossref","DOI":"10.1259\/bjr.20160665","article-title":"Quantitative radiomics studies for tissue characterization: a review of technology and methodological procedures","volume":"90","author":"Larue","year":"2017","journal-title":"Br. J. Radiol."},{"issue":"7","key":"10.1016\/j.cmpb.2023.107714_bib0030","doi-asserted-by":"crossref","first-page":"1012","DOI":"10.3109\/0284186X.2010.498437","article-title":"Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters","volume":"49","author":"Galavis","year":"2010","journal-title":"Acta Oncol. (Madr.)"},{"issue":"11","key":"10.1016\/j.cmpb.2023.107714_bib0031","doi-asserted-by":"crossref","first-page":"1667","DOI":"10.2967\/jnumed.115.156927","article-title":"Impact of image reconstruction settings on texture features in 18F-FDG PET","volume":"56","author":"Yan","year":"2015","journal-title":"J. Nucl. Med."},{"key":"10.1016\/j.cmpb.2023.107714_bib0032","doi-asserted-by":"crossref","first-page":"788","DOI":"10.1007\/s11307-016-0940-2","article-title":"Repeatability of radiomic features in non-small-cell lung cancer [18 F] FDG-PET\/CT studies: impact of reconstruction and delineation","volume":"18","author":"Velden","year":"2016","journal-title":"Mol. Imaging Biol."},{"key":"10.1016\/j.cmpb.2023.107714_bib0033","series-title":"Contrast Media & Molecular Imaging","article-title":"Parameters influencing PET imaging features: a phantom study with irregular and heterogeneous synthetic lesions","author":"Gallivanone","year":"2018"},{"key":"10.1016\/j.cmpb.2023.107714_bib0034","doi-asserted-by":"crossref","first-page":"524","DOI":"10.1016\/j.tranon.2015.11.013","article-title":"Variability of Image Features Computed from Conventional and Respiratory-Gated PET\/CT Images of Lung Cancer","volume":"8","author":"Oliver","year":"2015","journal-title":"Transl. Oncol."},{"key":"10.1016\/j.cmpb.2023.107714_bib0035","first-page":"1692","article-title":"The Impact of Optimal Respiratory Gating and Image Noise on Evaluation of Intratumor Heterogeneity on 18F-FDG PET Imaging of Lung Cancer","volume":"57","author":"Grootjans","year":"2017","journal-title":"J. Nucl. Med. Offic. Publ. Soc. Nucl. Med."},{"key":"10.1016\/j.cmpb.2023.107714_bib0036","article-title":"Comparison of Texture Features Derived from Static and Respiratory-Gated PET Images in Non-Small Cell Lung Cancer","volume":"9","author":"Yip","year":"2015","journal-title":"PLoS ONE"},{"issue":"6","key":"10.1016\/j.cmpb.2023.107714_bib0037","doi-asserted-by":"crossref","DOI":"10.1088\/1361-6560\/aab180","article-title":"Significance of the impact of motion compensation on the variability of PET image features","volume":"63","author":"Carles","year":"2018","journal-title":"Phys. Med. Biol."},{"key":"10.1016\/j.cmpb.2023.107714_bib0038","doi-asserted-by":"crossref","first-page":"e335","DOI":"10.1016\/j.clbc.2017.08.002","article-title":"Radiomics analysis on ultrasound for prediction of biologic behavior in breast invasive ductal carcinoma","volume":"18","author":"Guo","year":"2018","journal-title":"Clin. Breast Cancer"},{"key":"10.1016\/j.cmpb.2023.107714_bib0039","doi-asserted-by":"crossref","first-page":"230","DOI":"10.1159\/000335349","article-title":"Feasibility and reproducibility of fetal lung texture analysis by automatic quantitative ultrasound analysis and correlation with gestational age","volume":"31","author":"Cobo","year":"2012","journal-title":"Fetal. Diagn. Ther."},{"key":"10.1016\/j.cmpb.2023.107714_bib0040","doi-asserted-by":"crossref","first-page":"427","DOI":"10.1002\/uog.13441","article-title":"Quantitative ultrasound texture analysis of fetal lungs to predict neonatal respiratory morbidity","volume":"45","author":"Bonet-Carne","year":"2015","journal-title":"Ultrasound Obstet. Gynecol."},{"key":"10.1016\/j.cmpb.2023.107714_bib0041","doi-asserted-by":"crossref","first-page":"35632","DOI":"10.1038\/srep35632","article-title":"Quantitative analysis of echogenicity for patients with thyroid nodules","volume":"6","author":"Wu","year":"2016","journal-title":"Sci. Rep."},{"key":"10.1016\/j.cmpb.2023.107714_bib0042","first-page":"1753","article-title":"A Model Using Texture Features to Differentiate the Nature of Thyroid Nodules on Sonography","volume":"34","author":"Gesheng","year":"2015","journal-title":"J. Ultrasound Med. Offic. J. Am. Inst. Ultrasound Med."},{"key":"10.1016\/j.cmpb.2023.107714_bib0043","doi-asserted-by":"crossref","first-page":"3024","DOI":"10.1118\/1.4921123","article-title":"Computer-aided diagnosis for distinguishing between triple-negative breast cancer and fibroadenomas based on ultrasound texture features","volume":"42","author":"Woo Kyung","year":"2015","journal-title":"Med. Phys."},{"key":"10.1016\/j.cmpb.2023.107714_bib0044","first-page":"225","article-title":"Classification of breast tumors using sonographic texture analysis","volume":"34","author":"Abbasian","year":"2015","journal-title":"J. Ultrasound Med. Offic. J. Am. Inst. Ultrasound Med."},{"key":"10.1016\/j.cmpb.2023.107714_bib0045","doi-asserted-by":"crossref","first-page":"1027","DOI":"10.1109\/TITB.2010.2047649","article-title":"A review of noninvasive ultrasound image processing methods in the analysis of carotid plaque morphology for the assessment of stroke risk","volume":"14","author":"Kyriacou","year":"2010","journal-title":"IEEE Trans. Inf. Technol. Biomed. A Publ. IEEE Eng. Med. Biol. Soc."},{"key":"10.1016\/j.cmpb.2023.107714_bib0046","doi-asserted-by":"crossref","first-page":"1391","DOI":"10.3109\/0284186X.2013.812798","article-title":"Stability of FDG-PET radiomics features: an integrated analysis of test-retest and inter-observer variability","volume":"52","author":"Leijenaar","year":"2013","journal-title":"Acta Oncol. (Madr.)"},{"issue":"1","key":"10.1016\/j.cmpb.2023.107714_bib0047","doi-asserted-by":"crossref","first-page":"2","DOI":"10.1186\/s41747-021-00258-6","article-title":"Reproducibility of radiomic features in CT images of NSCLC patients: an integrative analysis on the impact of acquisition and reconstruction parameters","volume":"6","author":"Rinaldi","year":"2022","journal-title":"Eur. Radiol. Exp."},{"issue":"7","key":"10.1016\/j.cmpb.2023.107714_bib0048","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0102107","article-title":"Robust radiomics feature quantification using semiautomatic volumetric segmentation","volume":"9","author":"Parmar","year":"2014","journal-title":"PLoS ONE"},{"issue":"3","key":"10.1016\/j.cmpb.2023.107714_bib0049","doi-asserted-by":"crossref","first-page":"812","DOI":"10.1148\/radiol.12120255","article-title":"Reproducibility of dynamic contrast-enhanced MR imaging. Part II. Comparison of intra-and interobserver variability with manual region of interest placement versus semiautomatic lesion segmentation and histogram analysis","volume":"266","author":"Heye","year":"2013","journal-title":"Radiology"},{"issue":"6","key":"10.1016\/j.cmpb.2023.107714_bib0050","doi-asserted-by":"crossref","first-page":"e1","DOI":"10.1002\/mp.12124","article-title":"Classification and evaluation strategies of auto-segmentation approaches for PET: report of AAPM task group No. 211","volume":"44","author":"Hatt","year":"2017","journal-title":"Med. Phys."},{"key":"10.1016\/j.cmpb.2023.107714_bib0051","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2020.104142","article-title":"Robust identification of Parkinson's disease subtypes using radiomics and hybrid machine learning","volume":"129","author":"Salmanpour","year":"2021","journal-title":"Comput. Biol. Med."},{"year":"2015","series-title":"Head and Neck cancers, Version 1.2015 Featured Updates to the NCCN Guidelines","author":"Pfister","key":"10.1016\/j.cmpb.2023.107714_bib0052"},{"key":"10.1016\/j.cmpb.2023.107714_bib0053","article-title":"Head and neck squamous cell carcinoma","author":"Johnson","year":"2020","journal-title":"Nat. Res."},{"year":"2016","series-title":"Induction Chemotherapy Followed By Concurrent Radio-Chemotherapy Versus Concurrent Radio-Chemotherapy Alone As Treatment of Locally Advanced Squamous Cell Carcinoma of the Head and Neck (HNSCC): A meta-Analysis of Randomized Trials","author":"Budach","key":"10.1016\/j.cmpb.2023.107714_bib0054"},{"key":"10.1016\/j.cmpb.2023.107714_bib0055","doi-asserted-by":"crossref","DOI":"10.1016\/j.oraloncology.2013.12.008","article-title":"Clinical significance of head and neck squamous cell cancer biomarkers","author":"Polanska","year":"2014","journal-title":"Oral Oncol."},{"key":"10.1016\/j.cmpb.2023.107714_bib0056","doi-asserted-by":"crossref","DOI":"10.1200\/JCO.2007.14.1713","article-title":"Incidence trends for human papillomavirus-related and -unrelated oral squamous cell carcinomas in the United States","author":"Chaturvedi","year":"2008","journal-title":"J. Clin. Oncol."},{"issue":"supplement 2","key":"10.1016\/j.cmpb.2023.107714_bib0057","first-page":"2508","article-title":"Hybrid Machine Learning Systems for Prediction of Parkinson's Disease Pathogenic Variants using Clinical Information and Radiomics Features","volume":"63","author":"Hajianfar","year":"2022","journal-title":"J. Nuclear Med."},{"issue":"1","key":"10.1016\/j.cmpb.2023.107714_bib0058","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s40644-020-00360-9","article-title":"A radiomics nomogram for the prediction of overall survival in patients with hepatocellular carcinoma after hepatectomy","volume":"20","author":"Liu","year":"2020","journal-title":"Cancer Imaging"},{"issue":"10","key":"10.1016\/j.cmpb.2023.107714_bib0059","doi-asserted-by":"crossref","first-page":"1691","DOI":"10.3390\/diagnostics13101691","article-title":"Prediction of cognitive decline in Parkinson's disease using clinical and DAT SPECT imaging features, and hybrid machine learning systems","volume":"13","author":"Hosseinzadeh","year":"2023","journal-title":"Diagnostics"},{"issue":"6","key":"10.1016\/j.cmpb.2023.107714_bib0060","doi-asserted-by":"crossref","first-page":"604","DOI":"10.1159\/000520445","article-title":"Value of Radiomics of Perinephric Fat for Prediction of Intraoperative Complexity in Renal Tumor Surgery","volume":"106","author":"Muehlbauer","year":"2022","journal-title":"Urol. Int."},{"issue":"4","key":"10.1016\/j.cmpb.2023.107714_bib0061","doi-asserted-by":"crossref","first-page":"1437","DOI":"10.1002\/ima.22868","article-title":"Prediction of drug amount in Parkinson\u2019s disease using hybrid machine learning systems and radiomics features","volume":"33","author":"Salmanpour","year":"2023","journal-title":"Int. J. Imaging Syst. Technol."},{"issue":"12","key":"10.1016\/j.cmpb.2023.107714_bib0062","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0261401","article-title":"Computed tomography radiomics for the prediction of thymic epithelial tumor histology, TNM stage and myasthenia gravis","volume":"16","author":"Bl\u00fcthgen","year":"2021","journal-title":"PLoS ONE"},{"key":"10.1016\/j.cmpb.2023.107714_bib0063","series-title":"Medical Imaging 2022: Biomedical Applications in Molecular, Structural, and Functional Imaging","first-page":"45","article-title":"Advanced survival prediction in head and neck cancer using hybrid machine learning systems and radiomics features","volume":"12036","author":"Salmanpour","year":"2022"},{"issue":"10","key":"10.1016\/j.cmpb.2023.107714_bib0064","doi-asserted-by":"crossref","first-page":"1696","DOI":"10.3390\/diagnostics13101696","article-title":"Deep versus Handcrafted Tensor Radiomics Features: prediction of Survival in Head and Neck Cancer Using Machine Learning and Fusion Techniques","volume":"13","author":"Salmanpour","year":"2023","journal-title":"Diagnostics"},{"key":"10.1016\/j.cmpb.2023.107714_bib0065","article-title":"Multitask Outcome Prediction using Hybrid Machine Learning and PET-CT Fusion Radiomics","author":"Salmanpour","year":"2021","journal-title":"J. Nucl. Med."},{"key":"10.1016\/j.cmpb.2023.107714_bib0066","unstructured":"S. Ashrafinia, \"Quantitative Nuclear Medicine Imaging using Advanced Image Reconstruction and Radiomics,\" Ph.D. Dissertation, Baltimore, 2019."},{"key":"10.1016\/j.cmpb.2023.107714_bib0067","series-title":"Head and Neck Tumor Segmentation and Outcome Prediction: Third Challenge, HECKTOR 2022, Held in Conjunction with MICCAI 2022","first-page":"1","article-title":"Overview of the HECKTOR challenge at MICCAI 2022: automatic head and neck tumor segmentation and outcome prediction in PET\/CT","author":"Andrearczyk","year":"2023"},{"year":"2014","series-title":"Quantitative Imaging network: Data sharing and Competitive Algorithm Validation Leveraging the Cancer Imaging Archive","author":"Kalpathy-Cramer","key":"10.1016\/j.cmpb.2023.107714_bib0068"},{"issue":"supplement 2","key":"10.1016\/j.cmpb.2023.107714_bib0069","first-page":"3179","article-title":"Robustness and Reproducibility of Radiomics Features from Fusions of PET-CT Images","volume":"63","author":"Salmanpour","year":"2022","journal-title":"J. Nuclear Med."},{"issue":"2","key":"10.1016\/j.cmpb.2023.107714_bib0070","doi-asserted-by":"crossref","first-page":"155","DOI":"10.1016\/j.jcm.2016.02.012","article-title":"A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research","volume":"15","author":"Koo","year":"2016","journal-title":"J. Chiropr. Med."},{"issue":"2","key":"10.1016\/j.cmpb.2023.107714_bib0071","doi-asserted-by":"crossref","first-page":"420","DOI":"10.1037\/0033-2909.86.2.420","article-title":"Intraclass correlations: uses in assessing rater reliability","volume":"86","author":"Shrout","year":"1979","journal-title":"Psychol. Bull."},{"key":"10.1016\/j.cmpb.2023.107714_bib0072","doi-asserted-by":"crossref","unstructured":"S. Roy, T. Meena and S.J. Lim, Demystifying Supervised Learning in Healthcare 4.0: A New Reality of Transforming Diagnostic Medicine, vol. 12, Multidisciplinary Digital Publishing Institute, 2022, p. 2549.","DOI":"10.3390\/diagnostics12102549"},{"key":"10.1016\/j.cmpb.2023.107714_bib93","doi-asserted-by":"crossref","first-page":"233","DOI":"10.1016\/j.ejmp.2019.12.022","article-title":"Machine learning methods for optimal prediction of motor outcome in Parkinson\u2019s disease","volume":"69","author":"Salmanpour","year":"2020","journal-title":"Phys. Med."},{"key":"10.1016\/j.cmpb.2023.107714_bib89","series-title":"2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS\/MIC)","first-page":"1","article-title":"Machine learning methods for optimal prediction of outcome in Parkinson\u2019s disease","author":"Salmanpour","year":"2018"},{"key":"10.1016\/j.cmpb.2023.107714_bib91","first-page":"524","article-title":"Optimal feature selection and machine learning for prediction of outcome in Parkinson\u2019s disease","volume":"61","author":"Salmanpour","year":"2020","journal-title":"J. Nucl. Med."},{"issue":"1","key":"10.1016\/j.cmpb.2023.107714_bib0073","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41598-018-23152-5","article-title":"An ANOVA approach for statistical comparisons of brain networks","volume":"8","author":"Fraiman","year":"2018","journal-title":"Sci. Rep."},{"key":"10.1016\/j.cmpb.2023.107714_bib0074","series-title":"Big Data, Cloud and Applications: Third International Conference","article-title":"Comparison of Feature Selection Methods for Sentiment Analysis","author":"Mrabti","year":"2018"},{"issue":"5","key":"10.1016\/j.cmpb.2023.107714_bib0075","first-page":"721","article-title":"A Novel Feature Selection Method Based on Maximum Likelihood Logistic Regression for Imbalanced Learning in Software Defect Prediction","volume":"17","author":"Bashir","year":"2020","journal-title":"Int. Arab J. Inf. Technol."},{"year":"1983","series-title":"An Overview Of Machine Learning","author":"Carbonell","key":"10.1016\/j.cmpb.2023.107714_bib0076"},{"year":"2015","series-title":"Machine Learning: Trends, Perspectives, and Prospects","author":"Jordan","key":"10.1016\/j.cmpb.2023.107714_bib0077"},{"issue":"1","key":"10.1016\/j.cmpb.2023.107714_bib0078","doi-asserted-by":"crossref","first-page":"4006","DOI":"10.1038\/ncomms5006","article-title":"Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach","volume":"5","author":"Aerts","year":"2014","journal-title":"Nat. Commun."},{"issue":"14","key":"10.1016\/j.cmpb.2023.107714_bib0079","doi-asserted-by":"crossref","first-page":"3922","DOI":"10.1158\/0008-5472.CAN-17-0122","article-title":"Somatic Mutations Drive Distinct Imaging Phenotypes in Lung CancerSomatic Mutations and Radiomic Phenotypes","volume":"77","author":"Velazquez","year":"2017","journal-title":"Cancer Res."},{"issue":"1","key":"10.1016\/j.cmpb.2023.107714_bib0080","doi-asserted-by":"crossref","first-page":"72","DOI":"10.1593\/tlo.13844","article-title":"Reproducibility and prognosis of quantitative features extracted from CT images","volume":"7","author":"Balagurunathan","year":"2014","journal-title":"Transl. Oncol."},{"issue":"supplement 1","key":"10.1016\/j.cmpb.2023.107714_bib92","first-page":"107","article-title":"Hybrid machine learning methods and ensemble voting for identification of Parkinson\u2019s disease subtypes","volume":"61","author":"Salmanpour","year":"2021","journal-title":"J. Nucl. Med."},{"key":"10.1016\/j.cmpb.2023.107714_bib0081","article-title":"Radiomics feature reproducibility under inter-rater variability in segmentations of CT images","author":"Haarburger","year":"2020","journal-title":"Nat. Res."},{"year":"2021","series-title":"Reliability of Radiomics Features Due to Image Reconstruction Using a Standardized T 2-weighted pulse Sequence For MR-guided radiotherapy: An anthropomorphic Phantom Study","author":"Xue","key":"10.1016\/j.cmpb.2023.107714_bib0082"},{"key":"10.1016\/j.cmpb.2023.107714_bib0083","series-title":"EANM","article-title":"Deep versus handcrafted tensor radiomics features: application to survival prediction in head and neck cancer","author":"Salmanpour","year":"2022"},{"issue":"18","key":"10.1016\/j.cmpb.2023.107714_bib0084","doi-asserted-by":"crossref","first-page":"2157","DOI":"10.1200\/JCO.2015.65.9128","article-title":"Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer","volume":"34","author":"Huang","year":"2016","journal-title":"J. Clin. Oncol."},{"issue":"23","key":"10.1016\/j.cmpb.2023.107714_bib0085","doi-asserted-by":"crossref","first-page":"7253","DOI":"10.1158\/1078-0432.CCR-17-1038","article-title":"Radiomics analysis for evaluation of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer","volume":"23","author":"Zhenyu","year":"2017","journal-title":"Clin. Cancer Res."},{"key":"10.1016\/j.cmpb.2023.107714_bib0086","first-page":"1","article-title":"Fetal MRI radiomics: non-invasive and reproducible quantification of human lung maturity","volume":"2023","author":"Prayer","year":"2023","journal-title":"Eur. Radiol."},{"issue":"2","key":"10.1016\/j.cmpb.2023.107714_bib0087","doi-asserted-by":"crossref","first-page":"412","DOI":"10.1148\/radiol.2017170143","article-title":"Features from computerized texture analysis of breast cancers at pretreatment MR imaging are associated with response to neoadjuvant chemotherapy","volume":"288","author":"Chamming's","year":"2018","journal-title":"Radiology"},{"key":"10.1016\/j.cmpb.2023.107714_bib0088","series-title":"Medical Imaging 2022: Image Processing","first-page":"87","article-title":"Multi-modality fusion coupled with deep learning for improved outcome prediction in head and neck cancer","volume":"12032","author":"Javanmardi","year":"2022"}],"container-title":["Computer Methods and Programs in Biomedicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0169260723003802?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0169260723003802?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,7,31]],"date-time":"2024-07-31T00:59:44Z","timestamp":1722387584000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0169260723003802"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,10]]},"references-count":94,"alternative-id":["S0169260723003802"],"URL":"https:\/\/doi.org\/10.1016\/j.cmpb.2023.107714","relation":{},"ISSN":["0169-2607"],"issn-type":[{"type":"print","value":"0169-2607"}],"subject":[],"published":{"date-parts":[[2023,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Fusion-based tensor radiomics using reproducible features: Application to survival prediction in head and neck cancer","name":"articletitle","label":"Article Title"},{"value":"Computer Methods and Programs in Biomedicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cmpb.2023.107714","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"107714"}}