{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,22]],"date-time":"2025-03-22T12:06:31Z","timestamp":1742645191264,"version":"3.37.3"},"reference-count":40,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.es","clinicalkey.com.au","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computer Methods and Programs in Biomedicine"],"published-print":{"date-parts":[[2023,5]]},"DOI":"10.1016\/j.cmpb.2023.107360","type":"journal-article","created":{"date-parts":[[2023,1,18]],"date-time":"2023-01-18T20:18:28Z","timestamp":1674073108000},"page":"107360","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":18,"special_numbering":"C","title":["Cross-subject classification of depression by using multiparadigm EEG feature fusion"],"prefix":"10.1016","volume":"233","author":[{"ORCID":"https:\/\/orcid.org\/0000-0003-1919-2113","authenticated-orcid":false,"given":"Jianli","family":"Yang","sequence":"first","affiliation":[]},{"given":"Zhen","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Zhiyu","family":"Fu","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-6491-3330","authenticated-orcid":false,"given":"Bing","family":"Li","sequence":"additional","affiliation":[]},{"given":"Peng","family":"Xiong","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-1871-1017","authenticated-orcid":false,"given":"Xiuling","family":"Liu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"3","key":"10.1016\/j.cmpb.2023.107360_bib0001","first-page":"1325","article-title":"Mechanism of affective and cognitive-control brain regions in depression","volume":"115","author":"Liao","year":"2010","journal-title":"Adv. Psychol. Sci."},{"issue":"1","key":"10.1016\/j.cmpb.2023.107360_bib0002","doi-asserted-by":"crossref","first-page":"262","DOI":"10.1109\/TAFFC.2019.2934412","article-title":"An improved empirical mode decomposition of electroencephalogram signals for depression detection","volume":"11","author":"Shen","year":"2022","journal-title":"IEEE Trans. Affect. Comput."},{"issue":"11","key":"10.1016\/j.cmpb.2023.107360_bib0003","doi-asserted-by":"crossref","first-page":"249","DOI":"10.5539\/gjhs.v8n11p249","article-title":"Quantitative electroencephalography for objective and differential diagnosis of depression: a comprehensive review","volume":"8","author":"Ali","year":"2016","journal-title":"Glob. J. Health Sci."},{"issue":"10161","key":"10.1016\/j.cmpb.2023.107360_bib0004","doi-asserted-by":"crossref","first-page":"2299","DOI":"10.1016\/S0140-6736(18)31948-2","article-title":"Depression","volume":"392","author":"Malhi","year":"2018","journal-title":"Lancet"},{"key":"10.1016\/j.cmpb.2023.107360_bib0005","first-page":"1","article-title":"A pervasive approach to EEG-based depression detection","author":"Cai","year":"2018","journal-title":"Complexity"},{"issue":"4","key":"10.1016\/j.cmpb.2023.107360_bib0006","doi-asserted-by":"crossref","first-page":"337","DOI":"10.3390\/biomedicines9040337","article-title":"Evidence of neurovascular un-coupling in mild Alzheimer's disease through multimodal EEG-fNIRS and multivariate analysis of resting-state data","volume":"9","author":"Chiarelli","year":"2021","journal-title":"Biomedicines"},{"key":"10.1016\/j.cmpb.2023.107360_bib0007","doi-asserted-by":"crossref","DOI":"10.1016\/j.artmed.2021.102039","article-title":"Advanced EEG-based learning approaches to predict schizophrenia: promises and pitfalls","volume":"114","author":"Barros","year":"2021","journal-title":"Artif. Intell. Med."},{"issue":"4","key":"10.1016\/j.cmpb.2023.107360_bib0008","article-title":"Representing temporal network based on ddtf of eeg signals in children with autism and healthy children","volume":"62","author":"Ghahari","year":"2020","journal-title":"Biomed. Signal Process. Control"},{"issue":"2","key":"10.1016\/j.cmpb.2023.107360_bib0009","doi-asserted-by":"crossref","first-page":"146","DOI":"10.1007\/s40846-020-00594-9","article-title":"Frontal alpha eeg asymmetry variation of depression patients assessed by entropy measures and Lemple\u2013Ziv complexity","volume":"41","author":"Zhao","year":"2021","journal-title":"J. Med. Biol. Eng."},{"key":"10.1016\/j.cmpb.2023.107360_bib0010","doi-asserted-by":"crossref","first-page":"199","DOI":"10.1016\/j.jad.2020.12.015","article-title":"Increased functional connectivity within alpha and theta frequency bands in dysphoria: a resting-state EEG study","volume":"281","author":"Dell'Acqua","year":"2021","journal-title":"J. Affect. Disord."},{"key":"10.1016\/j.cmpb.2023.107360_bib0011","doi-asserted-by":"crossref","first-page":"1546","DOI":"10.1109\/TNSRE.2021.3092140","article-title":"Analysis of functional brain network in mdd based on improved empirical mode decomposition with resting state eeg data","volume":"29","author":"Shao","year":"2021","journal-title":"IEEE Trans. Neural Syst. Rehabil. Eng."},{"key":"10.1016\/j.cmpb.2023.107360_bib0012","doi-asserted-by":"crossref","first-page":"132","DOI":"10.1016\/j.jad.2019.05.070","article-title":"Prediction of rTms treatment response in major depressive disorder using machine learning techniques and nonlinear features of EEG signal","volume":"256","author":"Hasanzadeh","year":"2019","journal-title":"J. Affect. Disord."},{"key":"10.1016\/j.cmpb.2023.107360_bib0013","doi-asserted-by":"crossref","first-page":"566","DOI":"10.1109\/TNSRE.2021.3059429","article-title":"Enhancing EEG-based classification of depression patients using spatial information","volume":"29","author":"Jiang","year":"2021","journal-title":"IEEE Trans. Neural Syst. Rehabil. Eng."},{"issue":"7","key":"10.1016\/j.cmpb.2023.107360_bib0014","doi-asserted-by":"crossref","first-page":"2369","DOI":"10.3390\/s21072369","article-title":"An EEG-based transfer learning method for cross-subject fatigue mental state prediction","volume":"21","author":"Zeng","year":"2021","journal-title":"Sensors"},{"key":"10.1016\/j.cmpb.2023.107360_bib0015","article-title":"A compact and interpretable convolutional neural network for cross-subject driver drowsiness detection from single-channel EEG","author":"Cui","year":"2021","journal-title":"Methods"},{"key":"10.1016\/j.cmpb.2023.107360_bib0016","series-title":"Cross-Subject and Cross-Gender Emotion Classification from EEG","first-page":"1188","author":"Zhu","year":"2015"},{"key":"10.1016\/j.cmpb.2023.107360_bib0017","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TIM.2021.3053999","article-title":"DeprNet: a deep convolution neural network framework for detecting depression using EEG","volume":"70","author":"Seal","year":"2021","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"10.1016\/j.cmpb.2023.107360_bib0018","first-page":"1","article-title":"CNN and LSTM based ensemble learning for human emotion recognition using EEG recordings","author":"Iyer","year":"2022","journal-title":"Multimed. Tools Appl."},{"key":"10.1016\/j.cmpb.2023.107360_bib0019","doi-asserted-by":"crossref","first-page":"127","DOI":"10.1016\/j.inffus.2020.01.008","article-title":"Feature-level fusion approaches based on multimodal EEG data for depression recognition","volume":"59","author":"Cai","year":"2020","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.cmpb.2023.107360_bib0020","article-title":"Multimodal mild depression recognition based on EEG-EM synchronization acquisition network","author":"Zhu","year":"2019","journal-title":"IEEE Access"},{"issue":"6","key":"10.1016\/j.cmpb.2023.107360_bib0021","doi-asserted-by":"crossref","first-page":"2265","DOI":"10.1109\/JBHI.2019.2938247","article-title":"Multimodal depression detection: fusion of electroencephalography and paralinguistic behaviors using a novel strategy for classifier ensemble","volume":"23","author":"Zhang","year":"2019","journal-title":"IEEE J. Biomed. Health Inform."},{"key":"10.1016\/j.cmpb.2023.107360_bib0022","doi-asserted-by":"crossref","first-page":"156","DOI":"10.1016\/j.jad.2019.03.058","article-title":"Classifying major depression patients and healthy controls using EEG, eye tracking and galvanic skin response data","volume":"251","author":"Ding","year":"2019","journal-title":"J. Affect. Disord."},{"issue":"2","key":"10.1016\/j.cmpb.2023.107360_bib0023","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0171409","article-title":"A wavelet-based technique to predict treatment outcome for major depressive disorder","volume":"12","author":"Mumtaz","year":"2017","journal-title":"PLoS ONE"},{"key":"10.1016\/j.cmpb.2023.107360_bib0024","series-title":"Encyclopedia of Child Behavior and Development","first-page":"84","article-title":"American psychiatric association diagnostic and statistical manual of mental disorders (DSM-IV)","author":"Do","year":"2011"},{"issue":"4199","key":"10.1016\/j.cmpb.2023.107360_bib0025","doi-asserted-by":"crossref","first-page":"634","DOI":"10.1038\/165634c0","article-title":"International federation of electroencephalography and clinical neurophysiology","volume":"165","author":"Jasper","year":"1950","journal-title":"Nature"},{"issue":"1","key":"10.1016\/j.cmpb.2023.107360_bib0026","doi-asserted-by":"crossref","first-page":"158","DOI":"10.1109\/JBHI.2014.2333010","article-title":"Unsupervised eye blink artifact denoising of EEG data with modified multiscale sample entropy, kurtosis and wavelet-ICA","volume":"19","author":"Mahajan","year":"2014","journal-title":"IEEE J. Biomed. Health Inform."},{"issue":"2","key":"10.1016\/j.cmpb.2023.107360_bib0027","doi-asserted-by":"crossref","first-page":"382","DOI":"10.1109\/TIM.2017.2775358","article-title":"Separation of sources from single-channel EEG signals using independent component analysis","volume":"67","author":"Maddirala","year":"2018","journal-title":"IEEE Trans. Instrum. Meas."},{"issue":"1\u20132","key":"10.1016\/j.cmpb.2023.107360_bib0028","doi-asserted-by":"crossref","first-page":"79","DOI":"10.1159\/000438457","article-title":"A novel depression diagnosis index using nonlinear features in EEG signals","volume":"74","author":"Acharya","year":"2015","journal-title":"Eur. Neurol."},{"issue":"5\u20136","key":"10.1016\/j.cmpb.2023.107360_bib0029","doi-asserted-by":"crossref","first-page":"329","DOI":"10.1159\/000381950","article-title":"Computer-aided diagnosis of depression using EEG signals","volume":"73","author":"Acharya","year":"2015","journal-title":"Eur. Neurol."},{"issue":"6","key":"10.1016\/j.cmpb.2023.107360_bib0030","doi-asserted-by":"crossref","first-page":"1232","DOI":"10.1016\/j.clinph.2008.01.104","article-title":"Abnormal EEG complexity in patients with schizophrenia and depression","volume":"119","author":"Li","year":"2008","journal-title":"Clin. Neurophysiol."},{"issue":"1","key":"10.1016\/j.cmpb.2023.107360_bib0031","doi-asserted-by":"crossref","first-page":"75","DOI":"10.1109\/TIT.1976.1055501","article-title":"On the complexity of finite sequences","volume":"22","author":"Lempel","year":"1976","journal-title":"IEEE Trans. Inf. Theory"},{"issue":"2","key":"10.1016\/j.cmpb.2023.107360_bib0032","doi-asserted-by":"crossref","first-page":"842","DOI":"10.1103\/PhysRevA.36.842","article-title":"Easily calculable measure for the complexity of spatiotemporal patterns","volume":"36","author":"Kaspar","year":"1987","journal-title":"Phys. Rev. A"},{"issue":"3","key":"10.1016\/j.cmpb.2023.107360_bib0033","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1007\/BF00994018","article-title":"Support-vector networks","volume":"20","author":"Cortes","year":"1995","journal-title":"Mach. Learn."},{"issue":"1","key":"10.1016\/j.cmpb.2023.107360_bib0034","doi-asserted-by":"crossref","first-page":"4","DOI":"10.1109\/34.824819","article-title":"Statistical pattern recognition: a review","volume":"22","author":"Jain","year":"2000","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"1","key":"10.1016\/j.cmpb.2023.107360_bib0035","doi-asserted-by":"crossref","first-page":"69","DOI":"10.1080\/01431161.2011.562254","article-title":"Analysis of feature selection and its impact on hyperspectral data classification based on decision tree algorithm","volume":"11","author":"Wang","year":"2007","journal-title":"J. Remote Sens."},{"issue":"4","key":"10.1016\/j.cmpb.2023.107360_bib0036","doi-asserted-by":"crossref","first-page":"852","DOI":"10.1002\/hbm.21475","article-title":"Dynamic changes of ICA-derived EEG functional connectivity in the resting state","volume":"34","author":"Chen","year":"2013","journal-title":"Hum. Brain Mapp."},{"key":"10.1016\/j.cmpb.2023.107360_bib0037","doi-asserted-by":"crossref","first-page":"489","DOI":"10.1016\/j.neuroimage.2013.04.098","article-title":"Prefrontal activation in response to emotional words in patients with bipolar disorder and major depressive disorder","volume":"85","author":"Matsubara","year":"2014","journal-title":"Neuroimage"},{"issue":"1","key":"10.1016\/j.cmpb.2023.107360_bib0038","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s10916-019-1486-z","article-title":"Classification of depression patients and normal subjects based on electroencephalogram (EEG) signal using alpha power and theta asymmetry","volume":"44","author":"Mahato","year":"2020","journal-title":"J. Med. Syst."},{"key":"10.1016\/j.cmpb.2023.107360_bib0039","doi-asserted-by":"crossref","DOI":"10.1016\/j.neuroimage.2022.119337","article-title":"Eyes-closed versus eyes-open differences in spontaneous neural dynamics during development","volume":"258","author":"Petro","year":"2022","journal-title":"Neuroimage"},{"key":"10.1016\/j.cmpb.2023.107360_bib0040","doi-asserted-by":"crossref","first-page":"1019","DOI":"10.1109\/TNSRE.2022.3166824","article-title":"Alterations in patients with first-episode depression in the eyes-open and eyes-closed conditions: a resting-state EEG study","volume":"30","author":"Liu","year":"2022","journal-title":"IEEE Trans. Neural Syst. Rehabil. Eng."}],"container-title":["Computer Methods and Programs in Biomedicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0169260723000275?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0169260723000275?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,10,12]],"date-time":"2023-10-12T07:26:27Z","timestamp":1697095587000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0169260723000275"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,5]]},"references-count":40,"alternative-id":["S0169260723000275"],"URL":"https:\/\/doi.org\/10.1016\/j.cmpb.2023.107360","relation":{},"ISSN":["0169-2607"],"issn-type":[{"type":"print","value":"0169-2607"}],"subject":[],"published":{"date-parts":[[2023,5]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Cross-subject classification of depression by using multiparadigm EEG feature fusion","name":"articletitle","label":"Article Title"},{"value":"Computer Methods and Programs in Biomedicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cmpb.2023.107360","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"107360"}}