{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,12]],"date-time":"2024-10-12T04:03:04Z","timestamp":1728705784128},"reference-count":38,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.es","clinicalkey.com.au","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computer Methods and Programs in Biomedicine"],"published-print":{"date-parts":[[2023,3]]},"DOI":"10.1016\/j.cmpb.2022.107329","type":"journal-article","created":{"date-parts":[[2022,12,30]],"date-time":"2022-12-30T16:43:38Z","timestamp":1672418618000},"page":"107329","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":2,"special_numbering":"C","title":["A Graph-guided Hybrid Regularization Method For Bioluminescence Tomography"],"prefix":"10.1016","volume":"230","author":[{"given":"Mengxiang","family":"Chu","sequence":"first","affiliation":[]},{"given":"Hongbo","family":"Guo","sequence":"additional","affiliation":[]},{"given":"Xuelei","family":"He","sequence":"additional","affiliation":[]},{"given":"Beilei","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Yanqiu","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Xiangong","family":"Hu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4580-7898","authenticated-orcid":false,"given":"Jingjing","family":"Yu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2126-178X","authenticated-orcid":false,"given":"Xiaowei","family":"He","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.cmpb.2022.107329_bib0001","series-title":"Optical Tomography and Spectroscopy of Tissue XIV","first-page":"116391T","article-title":"Quantitative bioluminescence tomography-guided system for pre-clinical radiotherapy research","volume":"Vol.\u00a011639","author":"Xu","year":"2021"},{"issue":"6","key":"10.1016\/j.cmpb.2022.107329_bib0002","doi-asserted-by":"crossref","first-page":"066004","DOI":"10.1117\/1.JBO.27.6.066004","article-title":"Quantitative molecular bioluminescence tomography","volume":"27","author":"Bentley","year":"2022","journal-title":"J. Biomed. Opt."},{"issue":"8","key":"10.1016\/j.cmpb.2022.107329_bib0003","doi-asserted-by":"crossref","first-page":"2289","DOI":"10.1118\/1.1766420","article-title":"Uniqueness theorems in bioluminescence tomography","volume":"31","author":"Wang","year":"2004","journal-title":"Med. Phys."},{"key":"10.1016\/j.cmpb.2022.107329_bib0004","doi-asserted-by":"crossref","DOI":"10.1109\/TMI.2022.3167809","article-title":"Self-training strategy based on finite element method for adaptive bioluminescence tomography reconstruction","author":"Zhang","year":"2022","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"06","key":"10.1016\/j.cmpb.2022.107329_bib0005","doi-asserted-by":"crossref","first-page":"1930011","DOI":"10.1142\/S1793545819300118","article-title":"Brief review on learning-based methods for optical tomography","volume":"12","author":"Zhang","year":"2019","journal-title":"J. Innov. Opt. Health Sci."},{"issue":"2","key":"10.1016\/j.cmpb.2022.107329_bib0006","doi-asserted-by":"crossref","first-page":"1422","DOI":"10.1364\/OE.448250","article-title":"Total variation constrained graph manifold learning strategy for cerenkov luminescence tomography","volume":"30","author":"Guo","year":"2022","journal-title":"Opt. Express"},{"key":"10.1016\/j.cmpb.2022.107329_bib0007","series-title":"Twelfth International Conference on Photonics and Imaging in Biology and Medicine (PIBM 2014)","first-page":"128","article-title":"Enhanced Landweber algorithm via Bregman iterations for bioluminescence tomography","volume":"Vol.\u00a09230","author":"Xia","year":"2014"},{"issue":"17\u201318","key":"10.1016\/j.cmpb.2022.107329_bib0008","doi-asserted-by":"crossref","first-page":"2767","DOI":"10.1016\/j.jqsrt.2008.08.006","article-title":"Gauss\u2013Newton reconstruction method for optical tomography using the finite element solution of the radiative transfer equation","volume":"109","author":"Tarvainen","year":"2008","journal-title":"J. Quant. Spectrosc. Radiat. Transf."},{"issue":"7","key":"10.1016\/j.cmpb.2022.107329_bib0009","doi-asserted-by":"crossref","first-page":"1799","DOI":"10.1109\/TBME.2012.2194490","article-title":"Reconstruction of fluorescence molecular tomography using a neighborhood regularization","volume":"59","author":"Li","year":"2012","journal-title":"IEEE Trans. Biomed. Eng."},{"issue":"11","key":"10.1016\/j.cmpb.2022.107329_bib0010","doi-asserted-by":"crossref","first-page":"2343","DOI":"10.1109\/TMI.2017.2737661","article-title":"Bioluminescence tomography based on Gaussian weighted Laplace prior regularization for In vivo morphological imaging of glioma","volume":"36","author":"Gao","year":"2017","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.cmpb.2022.107329_bib0011","doi-asserted-by":"crossref","first-page":"307","DOI":"10.1109\/RBME.2020.2995124","article-title":"Bioluminescence imaging applications in cancer: acomprehensive review","volume":"14","author":"Alsawaftah","year":"2020","journal-title":"IEEE Rev. Biomed. Eng."},{"key":"10.1016\/j.cmpb.2022.107329_bib0012","series-title":"2019 13th International conference on Sampling Theory and Applications (SampTA)","first-page":"1","article-title":"NP-hardness of l0 minimization problems: revision and extension to the non-negative setting","author":"Nguyen","year":"2019"},{"issue":"24","key":"10.1016\/j.cmpb.2022.107329_bib0013","doi-asserted-by":"crossref","first-page":"24825","DOI":"10.1364\/OE.18.024825","article-title":"Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method","volume":"18","author":"He","year":"2010","journal-title":"Opt. Express"},{"issue":"8","key":"10.1016\/j.cmpb.2022.107329_bib0014","doi-asserted-by":"crossref","first-page":"8630","DOI":"10.1364\/OE.18.008630","article-title":"A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization","volume":"18","author":"Han","year":"2010","journal-title":"Opt. Express"},{"issue":"3","key":"10.1016\/j.cmpb.2022.107329_bib0015","doi-asserted-by":"crossref","first-page":"398","DOI":"10.1080\/17415977.2017.1310854","article-title":"A homotopy method for bioluminescence tomography","volume":"26","author":"Gong","year":"2018","journal-title":"Inverse Probl. Sci. Eng."},{"issue":"11","key":"10.1016\/j.cmpb.2022.107329_bib0016","doi-asserted-by":"crossref","first-page":"3388","DOI":"10.1109\/TBME.2021.3071823","article-title":"Adaptive grouping block sparse Bayesian learning method for accurate and robust reconstruction in bioluminescence tomography","volume":"68","author":"Yin","year":"2021","journal-title":"IEEE Trans. Biomed. Eng."},{"issue":"6","key":"10.1016\/j.cmpb.2022.107329_bib0017","doi-asserted-by":"crossref","first-page":"1060","DOI":"10.1364\/JOSAA.386961","article-title":"Hybrid reconstruction method for multispectral bioluminescence tomography with log-sum regularization","volume":"37","author":"Yu","year":"2020","journal-title":"JOSA A"},{"issue":"23","key":"10.1016\/j.cmpb.2022.107329_bib0018","doi-asserted-by":"crossref","first-page":"28068","DOI":"10.1364\/OE.25.028068","article-title":"Non-convex sparse regularization approach framework for high multiple-source resolution in cerenkov luminescence tomography","volume":"25","author":"Guo","year":"2017","journal-title":"Opt. Express"},{"issue":"5","key":"10.1016\/j.cmpb.2022.107329_bib0019","doi-asserted-by":"crossref","first-page":"1468","DOI":"10.1109\/TBME.2018.2874699","article-title":"Half thresholding pursuit algorithm for fluorescence molecular tomography","volume":"66","author":"He","year":"2018","journal-title":"IEEE Trans. Biomed. Eng."},{"issue":"5","key":"10.1016\/j.cmpb.2022.107329_bib0020","doi-asserted-by":"crossref","first-page":"056013","DOI":"10.1117\/1.JBO.18.5.056013","article-title":"Reconstruction algorithms based on L1-norm and L2-norm for two imaging models of fluorescence molecular tomography: a comparative study","volume":"18","author":"Yi","year":"2013","journal-title":"J. Biomed Opt."},{"issue":"12","key":"10.1016\/j.cmpb.2022.107329_bib0021","doi-asserted-by":"crossref","first-page":"749","DOI":"10.1038\/nrclinonc.2017.141","article-title":"Radiomics: the bridge between medical imaging and personalized medicine","volume":"14","author":"Lambin","year":"2017","journal-title":"Nat. Rev. Clin. Oncol."},{"issue":"5","key":"10.1016\/j.cmpb.2022.107329_bib0022","doi-asserted-by":"crossref","first-page":"1484","DOI":"10.1109\/TMI.2021.3057704","article-title":"A novel adaptive parameter search elastic net method for fluorescent molecular tomography","volume":"40","author":"Wang","year":"2021","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"19","key":"10.1016\/j.cmpb.2022.107329_bib0023","doi-asserted-by":"crossref","first-page":"195005","DOI":"10.1088\/1361-6560\/ac246f","article-title":"A robust elastic Net-\u21131\u21132 reconstruction method for x-ray luminescence computed tomography","volume":"66","author":"Zhao","year":"2021","journal-title":"Phys. Med. Biol."},{"issue":"1","key":"10.1016\/j.cmpb.2022.107329_bib0024","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1364\/BOE.10.000001","article-title":"Regularized reconstruction based on joint L1 and total variation for sparse-view cone-beam x-ray luminescence computed tomography","volume":"10","author":"Liu","year":"2019","journal-title":"Biomed. Opt. Express"},{"issue":"2","key":"10.1016\/j.cmpb.2022.107329_bib0025","doi-asserted-by":"crossref","first-page":"026012","DOI":"10.1117\/1.JBO.21.2.026012","article-title":"Fast multislice fluorescence molecular tomography using sparsity-inducing regularization","volume":"21","author":"Hejazi","year":"2016","journal-title":"J. Biomed. Opt."},{"issue":"4","key":"10.1016\/j.cmpb.2022.107329_bib0026","doi-asserted-by":"crossref","first-page":"e201960218","DOI":"10.1002\/jbio.201960218","article-title":"Sparse-graph manifold learning method for bioluminescence tomography","volume":"13","author":"Guo","year":"2020","journal-title":"J. Biophotonics."},{"issue":"4","key":"10.1016\/j.cmpb.2022.107329_bib0027","doi-asserted-by":"crossref","first-page":"045009","DOI":"10.1117\/1.JBO.22.4.045009","article-title":"Laplacian manifold regularization method for fluorescence molecular tomography","volume":"22","author":"He","year":"2017","journal-title":"J. Biomed. Opt."},{"issue":"2","key":"10.1016\/j.cmpb.2022.107329_bib0028","doi-asserted-by":"crossref","first-page":"719","DOI":"10.1214\/11-AOAS514","article-title":"Smoothing proximal gradient method for general structured sparse regression","volume":"6","author":"Chen","year":"2012","journal-title":"Ann. Appl. Stat."},{"issue":"4","key":"10.1016\/j.cmpb.2022.107329_bib0029","doi-asserted-by":"crossref","first-page":"e201700056","DOI":"10.1002\/jbio.201700056","article-title":"A hybrid clustering algorithm for multiple-source resolving in bioluminescence tomography","volume":"11","author":"Guo","year":"2018","journal-title":"J. Biophotonics"},{"issue":"1","key":"10.1016\/j.cmpb.2022.107329_bib0030","doi-asserted-by":"crossref","first-page":"127","DOI":"10.1007\/s10107-004-0552-5","article-title":"Smooth minimization of non-smooth functions","volume":"103","author":"Nesterov","year":"2005","journal-title":"Math. Program."},{"issue":"1","key":"10.1016\/j.cmpb.2022.107329_bib0031","doi-asserted-by":"crossref","first-page":"183","DOI":"10.1137\/080716542","article-title":"A fast iterative shrinkage-thresholding algorithm for linear inverse problems","volume":"2","author":"Beck","year":"2009","journal-title":"SIAM J. Imaging Sci."},{"issue":"3","key":"10.1016\/j.cmpb.2022.107329_bib0032","doi-asserted-by":"crossref","first-page":"577","DOI":"10.1088\/0031-9155\/52\/3\/003","article-title":"Digimouse: a 3D whole body mouse atlas from CT and cryosection data","volume":"52","author":"Dogdas","year":"2007","journal-title":"Phys. Med. Biol."},{"issue":"3","key":"10.1016\/j.cmpb.2022.107329_bib0033","doi-asserted-by":"crossref","first-page":"1275","DOI":"10.1364\/BOE.448862","article-title":"Bioluminescence tomography reconstruction in conjunction with an organ probability map as an anatomical reference","volume":"13","author":"Yin","year":"2022","journal-title":"Biomed. Opt. Express"},{"issue":"7","key":"10.1016\/j.cmpb.2022.107329_bib0034","doi-asserted-by":"crossref","first-page":"1729","DOI":"10.1364\/OL.454672","article-title":"VoxDMRN: a voxelwise deep max-pooling residual network for bioluminescence tomography reconstruction","volume":"47","author":"Li","year":"2022","journal-title":"Opt. Lett."},{"issue":"12","key":"10.1016\/j.cmpb.2022.107329_bib0035","doi-asserted-by":"crossref","first-page":"7807","DOI":"10.1364\/BOE.435932","article-title":"L1-L2 norm regularization via forward-backward splitting for fluorescence molecular tomography","volume":"12","author":"Zhang","year":"2021","journal-title":"Biomed. Opt. Express."},{"key":"10.1016\/j.cmpb.2022.107329_bib0036","article-title":"Multispectral differential reconstruction strategy for bioluminescence tomography","author":"Liu","year":"2022","journal-title":"Opt. Mol. Imaging Cancer Res."},{"issue":"3","key":"10.1016\/j.cmpb.2022.107329_bib0037","doi-asserted-by":"crossref","first-page":"309","DOI":"10.15302\/J-ENG-2015082","article-title":"Optical molecular imaging frontiers in oncology: the pursuit of accuracy and sensitivity","volume":"1","author":"Wang","year":"2015","journal-title":"Engineering"},{"key":"10.1016\/j.cmpb.2022.107329_bib0038","doi-asserted-by":"crossref","first-page":"29","DOI":"10.1016\/j.apnum.2020.01.015","article-title":"Effective new methods for automated parameter selection in regularized inverse problems","volume":"152","author":"Sanders","year":"2020","journal-title":"Appl. Numer. Math."}],"container-title":["Computer Methods and Programs in Biomedicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0169260722007106?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0169260722007106?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,10,11]],"date-time":"2024-10-11T07:10:20Z","timestamp":1728630620000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0169260722007106"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,3]]},"references-count":38,"alternative-id":["S0169260722007106"],"URL":"https:\/\/doi.org\/10.1016\/j.cmpb.2022.107329","relation":{},"ISSN":["0169-2607"],"issn-type":[{"type":"print","value":"0169-2607"}],"subject":[],"published":{"date-parts":[[2023,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A Graph-guided Hybrid Regularization Method For Bioluminescence Tomography","name":"articletitle","label":"Article Title"},{"value":"Computer Methods and Programs in Biomedicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cmpb.2022.107329","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"107329"}}