{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,23]],"date-time":"2024-08-23T04:41:30Z","timestamp":1724388090923},"reference-count":34,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,4,2]],"date-time":"2023-04-02T00:00:00Z","timestamp":1680393600000},"content-version":"am","delay-in-days":305,"URL":"http:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100000024","name":"Canadian Institutes of Health Research","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100000024","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.es","clinicalkey.com.au","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computer Methods and Programs in Biomedicine"],"published-print":{"date-parts":[[2022,6]]},"DOI":"10.1016\/j.cmpb.2022.106750","type":"journal-article","created":{"date-parts":[[2022,3,17]],"date-time":"2022-03-17T07:14:31Z","timestamp":1647501271000},"page":"106750","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":11,"special_numbering":"C","title":["Testing the Ability of Convolutional Neural Networks to Learn Radiomic Features"],"prefix":"10.1016","volume":"219","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-0141-7628","authenticated-orcid":false,"given":"Ivan S.","family":"Klyuzhin","sequence":"first","affiliation":[]},{"given":"Yixi","family":"Xu","sequence":"additional","affiliation":[]},{"given":"Anthony","family":"Ortiz","sequence":"additional","affiliation":[]},{"given":"Juan Lavista","family":"Ferres","sequence":"additional","affiliation":[]},{"given":"Ghassan","family":"Hamarneh","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9980-2403","authenticated-orcid":false,"given":"Arman","family":"Rahmim","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.cmpb.2022.106750_bib0001","doi-asserted-by":"crossref","first-page":"563","DOI":"10.1148\/radiol.2015151169","article-title":"Radiomics: Images Are More than Pictures, They Are Data","volume":"278","author":"Gillies","year":"2016","journal-title":"Radiology"},{"key":"10.1016\/j.cmpb.2022.106750_bib0002","doi-asserted-by":"crossref","first-page":"1567","DOI":"10.1158\/0008-5472.CAN-14-1428","article-title":"Impact of metabolic heterogeneity on tumor growth, invasion, and treatment outcomes","volume":"75","author":"Robertson-Tessi","year":"2015","journal-title":"Cancer Res"},{"key":"10.1016\/j.cmpb.2022.106750_bib0003","doi-asserted-by":"crossref","first-page":"179","DOI":"10.1182\/blood-2018-01-826958","article-title":"Metabolic heterogeneity on baseline 18FDG-PET\/CT scan is a predictor of outcome in primary mediastinal B-cell lymphoma","volume":"132","author":"Ceriani","year":"2018","journal-title":"Blood"},{"key":"10.1016\/j.cmpb.2022.106750_bib0004","doi-asserted-by":"crossref","DOI":"10.1016\/j.cmpb.2020.105669","article-title":"Prediction of survival outcome based on clinical features and pretreatment 18FDG-PET\/CT for HNSCC patients","volume":"195","author":"Ghosh","year":"2020","journal-title":"Comput. Methods Programs Biomed."},{"key":"10.1016\/j.cmpb.2022.106750_bib0005","doi-asserted-by":"crossref","first-page":"7921","DOI":"10.18632\/oncotarget.13855","article-title":"Tumor compactness improves the preoperative volumetry-based prediction of the pathological complete response of rectal cancer after preoperative concurrent chemoradiotherapy","volume":"8","author":"Hsu","year":"2017","journal-title":"Oncotarget"},{"key":"10.1016\/j.cmpb.2022.106750_bib0006","doi-asserted-by":"crossref","DOI":"10.1016\/j.cmpb.2020.105759","article-title":"Developing a new radiomics-based CT image marker to detect lymph node metastasis among cervical cancer patients","volume":"197","author":"Chen","year":"2020","journal-title":"Comput. Methods Programs Biomed."},{"key":"10.1016\/j.cmpb.2022.106750_bib0007","doi-asserted-by":"crossref","DOI":"10.1016\/j.cmpb.2019.105134","article-title":"An ensemble learning approach for brain cancer detection exploiting radiomic features","volume":"185","author":"Brunese","year":"2020","journal-title":"Comput. Methods Programs Biomed."},{"key":"10.1016\/j.cmpb.2022.106750_bib0008","doi-asserted-by":"crossref","DOI":"10.1016\/j.cmpb.2021.106131","article-title":"Feature selection and machine learning methods for optimal identification and prediction of subtypes in Parkinson's disease","volume":"206","author":"Salmanpour","year":"2021","journal-title":"Comput. Methods Programs Biomed."},{"key":"10.1016\/j.cmpb.2022.106750_bib0009","doi-asserted-by":"crossref","DOI":"10.1016\/j.cmpb.2021.106140","article-title":"Texture analysis based on U-Net neural network for intracranial hemorrhage identification predicts early enlargement","volume":"206","author":"Liu","year":"2021","journal-title":"Comput. Methods Programs Biomed."},{"key":"10.1016\/j.cmpb.2022.106750_bib0010","doi-asserted-by":"crossref","DOI":"10.1016\/j.cmpb.2019.105027","article-title":"Multiscale spatial gradient features for 18F-FDG PET image-guided diagnosis of Alzheimer's disease","volume":"180","author":"Pan","year":"2019","journal-title":"Comput. Methods Programs Biomed."},{"key":"10.1016\/j.cmpb.2022.106750_bib0011","doi-asserted-by":"crossref","first-page":"205","DOI":"10.1016\/j.cmpb.2018.09.001","article-title":"An effective computer aided diagnosis model for pancreas cancer on PET\/CT images","volume":"165","author":"Li","year":"2018","journal-title":"Comput. Methods Programs Biomed"},{"key":"10.1016\/j.cmpb.2022.106750_bib0012","doi-asserted-by":"crossref","first-page":"1234","DOI":"10.1016\/j.mri.2012.06.010","article-title":"Radiomics: The process and the challenges","volume":"30","author":"Kumar","year":"2012","journal-title":"Magn. Reson. Imaging."},{"key":"10.1016\/j.cmpb.2022.106750_bib0013","doi-asserted-by":"crossref","DOI":"10.1016\/j.cmpb.2019.105153","article-title":"Texture analysis and multiple-instance learning for the classification of malignant lymphomas","volume":"185","author":"Lippi","year":"2020","journal-title":"Comput. Methods Programs Biomed."},{"key":"10.1016\/j.cmpb.2022.106750_bib0014","doi-asserted-by":"crossref","first-page":"151","DOI":"10.1007\/s00259-016-3427-0","article-title":"Characterization of PET\/CT images using texture analysis: the past, the present\u2026 any future?","volume":"44","author":"Hatt","year":"2017","journal-title":"Eur. J. Nucl. Med. Mol. Imaging."},{"key":"10.1016\/j.cmpb.2022.106750_bib0015","doi-asserted-by":"crossref","first-page":"207","DOI":"10.1080\/23808993.2016.1164013","article-title":"Radiomics: a new application from established techniques","volume":"1","author":"Parekh","year":"2016","journal-title":"Expert Rev. Precis. Med. Drug Dev."},{"key":"10.1016\/j.cmpb.2022.106750_bib0016","doi-asserted-by":"crossref","first-page":"1960","DOI":"10.1007\/s00261-019-02028-w","article-title":"Radiogenomics: bridging imaging and genomics","volume":"44","author":"Bodalal","year":"2019","journal-title":"Abdom. Radiol."},{"key":"10.1016\/j.cmpb.2022.106750_bib0017","doi-asserted-by":"crossref","DOI":"10.1016\/j.cmpb.2021.106287","article-title":"Dual-region radiomics signature: Integrating primary tumor and lymph node computed tomography features improves survival prediction in esophageal squamous cell cancer","volume":"208","author":"Lu","year":"2021","journal-title":"Comput. Methods Programs Biomed."},{"key":"10.1016\/j.cmpb.2022.106750_bib0018","series-title":"European conference on computer vision","first-page":"818","article-title":"Visualizing and understanding convolutional networks","author":"Zeiler Matthew","year":"2014"},{"key":"10.1016\/j.cmpb.2022.106750_bib0019","doi-asserted-by":"crossref","first-page":"1836","DOI":"10.1093\/annonc\/mdy166","article-title":"Man against Machine: Diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists","volume":"29","author":"Haenssle","year":"2018","journal-title":"Ann. Oncol."},{"key":"10.1016\/j.cmpb.2022.106750_bib0020","doi-asserted-by":"crossref","first-page":"954","DOI":"10.1038\/s41591-019-0447-x","article-title":"End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography","volume":"25","author":"Ardila","year":"2019","journal-title":"Nat. Med."},{"key":"10.1016\/j.cmpb.2022.106750_bib0021","first-page":"1","article-title":"Deep neural networks improve radiologists\u2019 performance in breast cancer screening","author":"Wu","year":"2019","journal-title":"IEEE Trans. Med. Imaging."},{"key":"10.1016\/j.cmpb.2022.106750_bib0022","doi-asserted-by":"crossref","first-page":"89","DOI":"10.1038\/s41586-019-1799-6","article-title":"International evaluation of an AI system for breast cancer screening","volume":"577","author":"McKinney","year":"2020","journal-title":"Nature"},{"key":"10.1016\/j.cmpb.2022.106750_bib0023","doi-asserted-by":"crossref","DOI":"10.1007\/BF02551274","article-title":"Approximation by superpositions of a sigmoidal function","author":"Cybenko","year":"1989","journal-title":"Math. Control. Signals, Syst."},{"key":"10.1016\/j.cmpb.2022.106750_bib0024","doi-asserted-by":"crossref","first-page":"359","DOI":"10.1016\/0893-6080(89)90020-8","article-title":"Multilayer feedforward networks are universal approximators","volume":"2","author":"Hornik","year":"1989","journal-title":"Neural Networks"},{"key":"10.1016\/j.cmpb.2022.106750_bib0025","series-title":"7th Int. Conf. Learn. Represent. ICLR 2019","first-page":"1","article-title":"ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness","author":"Geirhos","year":"2018"},{"key":"10.1016\/j.cmpb.2022.106750_bib0026","doi-asserted-by":"crossref","first-page":"287","DOI":"10.1145\/325165.325247","article-title":"An image synthesizer","volume":"19","author":"Perlin","year":"1985","journal-title":"ACM SIGGRAPH Comput. Graph."},{"key":"10.1016\/j.cmpb.2022.106750_bib0027","doi-asserted-by":"crossref","first-page":"328","DOI":"10.1148\/radiol.2020191145","article-title":"The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping","volume":"295","author":"Zwanenburg","year":"2020","journal-title":"Radiology"},{"key":"10.1016\/j.cmpb.2022.106750_bib0028","doi-asserted-by":"crossref","first-page":"222","DOI":"10.1007\/s12149-011-0562-3","article-title":"Intratumoral heterogeneity of F-18 FDG uptake differentiates between gastrointestinal stromal tumors and abdominal malignant lymphomas on PET\/CT","volume":"26","author":"Watabe","year":"2012","journal-title":"Ann. Nucl. Med."},{"key":"10.1016\/j.cmpb.2022.106750_bib0029","series-title":"Phd dissertation","author":"Ashrafinia","year":"2019"},{"key":"10.1016\/j.cmpb.2022.106750_bib0030","doi-asserted-by":"crossref","DOI":"10.18383\/j.tom.2019.00031","article-title":"Standardization in quantitative imaging: A multicenter comparison of radiomic features from different software packages on digital reference objects and patient data sets","author":"McNitt-Gray","year":"2020","journal-title":"Tomography"},{"key":"10.1016\/j.cmpb.2022.106750_bib0031","doi-asserted-by":"crossref","first-page":"666","DOI":"10.1093\/jrr\/rrz035","article-title":"Volumetric imaging parameters are significant for predicting the pathological complete response of preoperative concurrent chemoradiotherapy in local advanced rectal cancer","volume":"60","author":"Wang","year":"2019","journal-title":"J. Radiat. Res."},{"key":"10.1016\/j.cmpb.2022.106750_bib0032","article-title":"Deep semantic segmentation of natural and medical images: a review","author":"Asgari","year":"2020","journal-title":"Artif. Intell. Rev."},{"key":"10.1016\/j.cmpb.2022.106750_bib0033","series-title":"29th Annual Conference on Learning Theory;49 of Proceedings of Machine Learning Research","first-page":"1517","article-title":"Benefits of depth in neural networks","author":"Telgarsky","year":"2016"},{"key":"10.1016\/j.cmpb.2022.106750_bib0034","series-title":"In International Conference on Learning Representations","article-title":"Why deep neural networks for function approximation?","author":"Liang","year":"2017"}],"container-title":["Computer Methods and Programs in Biomedicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0169260722001365?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0169260722001365?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,4,12]],"date-time":"2023-04-12T14:21:07Z","timestamp":1681309267000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0169260722001365"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,6]]},"references-count":34,"alternative-id":["S0169260722001365"],"URL":"https:\/\/doi.org\/10.1016\/j.cmpb.2022.106750","relation":{"has-preprint":[{"id-type":"doi","id":"10.1101\/2020.09.19.20198077","asserted-by":"object"}]},"ISSN":["0169-2607"],"issn-type":[{"value":"0169-2607","type":"print"}],"subject":[],"published":{"date-parts":[[2022,6]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Testing the Ability of Convolutional Neural Networks to Learn Radiomic Features","name":"articletitle","label":"Article Title"},{"value":"Computer Methods and Programs in Biomedicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cmpb.2022.106750","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"106750"}}