{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,6]],"date-time":"2024-07-06T15:35:16Z","timestamp":1720280116807},"reference-count":26,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,12,1]],"date-time":"2020-12-01T00:00:00Z","timestamp":1606780800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100002858","name":"China Postdoctoral Science Foundation","doi-asserted-by":"publisher","award":["2020M671827"],"id":[{"id":"10.13039\/501100002858","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["clinicalkey.jp","clinicalkey.com","clinicalkey.es","clinicalkey.fr","clinicalkey.com.au","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computer Methods and Programs in Biomedicine"],"published-print":{"date-parts":[[2020,12]]},"DOI":"10.1016\/j.cmpb.2020.105764","type":"journal-article","created":{"date-parts":[[2020,9,30]],"date-time":"2020-09-30T22:35:53Z","timestamp":1601505353000},"page":"105764","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":4,"special_numbering":"C","title":["A novel supervised learning method to generate CT images for attenuation correction in delayed pet scans"],"prefix":"10.1016","volume":"197","author":[{"given":"Fan","family":"Rao","sequence":"first","affiliation":[]},{"given":"Bao","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Yen-Wei","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Jingsong","family":"Li","sequence":"additional","affiliation":[]},{"given":"Hongkai","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Hongwei","family":"Ye","sequence":"additional","affiliation":[]},{"given":"Yaofa","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Kui","family":"Zhao","sequence":"additional","affiliation":[]},{"given":"Wentao","family":"Zhu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.cmpb.2020.105764_bib0001","doi-asserted-by":"crossref","first-page":"412","DOI":"10.1007\/s00259-017-3853-7","article-title":"EANM\/EARL FDG-PET\/CT accreditation-summary results from the first 200 accredited imaging systems","volume":"45","author":"Kaalep","year":"2018","journal-title":"Eur. J. Nucl. Med. Mol. Imaging"},{"key":"10.1016\/j.cmpb.2020.105764_bib0002","doi-asserted-by":"crossref","first-page":"111","DOI":"10.1016\/j.compmedimag.2018.09.008","article-title":"Automatic localization of normal active organs in 3D PET scans","volume":"70","author":"Afshari","year":"2018","journal-title":"Comput. Med. Imaging Graph."},{"key":"10.1016\/j.cmpb.2020.105764_bib0003","doi-asserted-by":"crossref","first-page":"22649","DOI":"10.1007\/s11042-017-5067-1","article-title":"MRI and PET image fusion using structure tensor and dual ripplet-II transform","volume":"77","author":"Shahdoosti","year":"2018","journal-title":"Multimed. Tools Appl."},{"key":"10.1016\/j.cmpb.2020.105764_bib0004","doi-asserted-by":"crossref","first-page":"83","DOI":"10.1186\/s13550-019-0553-2","article-title":"Quantitative and clinical impact of MRI-based attenuation correction methods in [18F] FDG evaluation of dementia","volume":"9","author":"\u00d8en","year":"2019","journal-title":"EJNMMI Res."},{"key":"10.1016\/j.cmpb.2020.105764_bib0005","doi-asserted-by":"crossref","DOI":"10.1088\/1361-6560\/ab652c","article-title":"Deep learning-based attenuation correction in the absence of structural information for whole-body PET imaging","volume":"65","author":"Dong","year":"2020","journal-title":"Phys. Med. Biol."},{"key":"10.1016\/j.cmpb.2020.105764_bib0006","doi-asserted-by":"crossref","first-page":"359","DOI":"10.1007\/s40336-017-0232-0","article-title":"Dose optimization: a review of CT imaging for PET attenuation correction","volume":"5","author":"Brady","year":"2017","journal-title":"Clin. Transl. Imaging"},{"key":"10.1016\/j.cmpb.2020.105764_bib0007","first-page":"1155","article-title":"The role of CT technique and object size on PET image ROI quantitation and variability","volume":"58","author":"Territo","year":"2017","journal-title":"J. Nucl. Med."},{"key":"10.1016\/j.cmpb.2020.105764_bib0008","doi-asserted-by":"crossref","first-page":"187","DOI":"10.1007\/s11307-010-0303-3","article-title":"Comparative assessment of energy-mapping approaches in CT-based attenuation correction for PET","volume":"13","author":"Ay","year":"2011","journal-title":"Mol. Imaging Biol."},{"key":"10.1016\/j.cmpb.2020.105764_bib0009","doi-asserted-by":"crossref","first-page":"1510","DOI":"10.1109\/TNS.2003.817281","article-title":"A generalized model for the conversion from CT numbers to linear attenuation coefficients","volume":"50","author":"Bai","year":"2003","journal-title":"IEEE Trans. Nucl. Sci."},{"key":"10.1016\/j.cmpb.2020.105764_bib0010","doi-asserted-by":"crossref","first-page":"2116","DOI":"10.1002\/mp.14091","article-title":"Improving the CT (140 kVp) to PET (511keV) conversion in PET\/MR hardware component attenuation correction","volume":"47","author":"Oehmigen","year":"2020","journal-title":"Med. Phys."},{"key":"10.1016\/j.cmpb.2020.105764_bib0011","series-title":"Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support","first-page":"204","article-title":"End-to-end unsupervised deformable image registration with a convolutional neural network","author":"de Vos","year":"2017"},{"key":"10.1016\/j.cmpb.2020.105764_bib0012","doi-asserted-by":"crossref","first-page":"1788","DOI":"10.1109\/TMI.2019.2897538","article-title":"VoxelMorph: a learning framework for deformable medical image registration","volume":"38","author":"Balakrishnan","year":"2019","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.cmpb.2020.105764_bib0013","article-title":"Unsupervised 3d end-to-end medical image registration with volume tweening network","author":"Zhao","year":"2019","journal-title":"IEEE J. Biomed. Health Inform."},{"key":"10.1016\/j.cmpb.2020.105764_bib0014","series-title":"Proceedings of the IEEE International Conference on Computer Vision","first-page":"10600","article-title":"Recursive cascaded networks for unsupervised medical image registration","author":"Zhao","year":"2019"},{"key":"10.1016\/j.cmpb.2020.105764_bib0015","doi-asserted-by":"crossref","first-page":"8","DOI":"10.1007\/s00138-020-01060-x","article-title":"Deep learning in medical image registration: a survey","volume":"31","author":"Haskins","year":"2020","journal-title":"Mach. Vis. Appl."},{"key":"10.1016\/j.cmpb.2020.105764_bib0016","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"232","article-title":"Nonrigid image registration using multi-scale 3D convolutional neural networks","author":"Sokooti","year":"2017"},{"key":"10.1016\/j.cmpb.2020.105764_bib0017","doi-asserted-by":"crossref","first-page":"1097","DOI":"10.1109\/TMI.2018.2878316","article-title":"Pulmonary CT registration through supervised learning with convolutional neural networks","volume":"38","author":"Eppenhof","year":"2018","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.cmpb.2020.105764_bib0018","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"223","article-title":"Training CNNs for image registration from few samples with model-based data augmentation","author":"Uzunova","year":"2017"},{"key":"10.1016\/j.cmpb.2020.105764_bib0019","doi-asserted-by":"crossref","first-page":"2071","DOI":"10.2967\/jnumed.114.143958","article-title":"PET attenuation correction using synthetic CT from ultrashort echo-time MR imaging","volume":"55","author":"Roy","year":"2014","journal-title":"J. Nucl. Med."},{"key":"10.1016\/j.cmpb.2020.105764_bib0020","doi-asserted-by":"crossref","first-page":"676","DOI":"10.1148\/radiol.2017170700","article-title":"Deep learning MR imaging\u2013based attenuation correction for PET\/MR imaging","volume":"286","author":"Liu","year":"2018","journal-title":"Radiology"},{"key":"10.1016\/j.cmpb.2020.105764_bib0021","doi-asserted-by":"crossref","first-page":"555","DOI":"10.2967\/jnumed.118.214320","article-title":"Synthesis of patient-specific transmission data for PET attenuation correction for PET\/MRI neuroimaging using a convolutional neural network","volume":"60","author":"Spuhler","year":"2019","journal-title":"J. Nucl. Med."},{"key":"10.1016\/j.cmpb.2020.105764_bib0022","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"417","article-title":"Medical image synthesis with context-aware generative adversarial networks","author":"Nie","year":"2017"},{"key":"10.1016\/j.cmpb.2020.105764_bib0023","series-title":"International workshop on simulation and synthesis in medical imaging","first-page":"14","article-title":"Deep MR to CT synthesis using unpaired data","author":"Wolterink","year":"2017"},{"key":"10.1016\/j.cmpb.2020.105764_bib0024","doi-asserted-by":"crossref","first-page":"1045","DOI":"10.1007\/s10278-013-9622-7","article-title":"The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository","volume":"26","author":"Clark","year":"2013","journal-title":"J. Digit. Imaging"},{"key":"10.1016\/j.cmpb.2020.105764_bib0025","doi-asserted-by":"crossref","first-page":"749","DOI":"10.1109\/LGRS.2018.2802944","article-title":"Road extraction by deep residual U-Net","volume":"15","author":"Zhang","year":"2018","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"10.1016\/j.cmpb.2020.105764_bib0026","doi-asserted-by":"crossref","first-page":"898","DOI":"10.1016\/S1053-8119(03)00379-3","article-title":"Effects of attenuation correction and reconstruction method on PET activation studies","volume":"20","author":"Mesina","year":"2003","journal-title":"Neuroimage"}],"container-title":["Computer Methods and Programs in Biomedicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0169260720315972?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0169260720315972?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2020,11,22]],"date-time":"2020-11-22T21:32:54Z","timestamp":1606080774000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0169260720315972"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,12]]},"references-count":26,"alternative-id":["S0169260720315972"],"URL":"https:\/\/doi.org\/10.1016\/j.cmpb.2020.105764","relation":{},"ISSN":["0169-2607"],"issn-type":[{"value":"0169-2607","type":"print"}],"subject":[],"published":{"date-parts":[[2020,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A novel supervised learning method to generate CT images for attenuation correction in delayed pet scans","name":"articletitle","label":"Article Title"},{"value":"Computer Methods and Programs in Biomedicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cmpb.2020.105764","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"105764"}}