{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T06:34:35Z","timestamp":1726468475005},"reference-count":33,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,10,1]],"date-time":"2020-10-01T00:00:00Z","timestamp":1601510400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["clinicalkey.jp","clinicalkey.com","clinicalkey.es","clinicalkey.fr","clinicalkey.com.au","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computer Methods and Programs in Biomedicine"],"published-print":{"date-parts":[[2020,10]]},"DOI":"10.1016\/j.cmpb.2020.105669","type":"journal-article","created":{"date-parts":[[2020,7,18]],"date-time":"2020-07-18T01:33:35Z","timestamp":1595036015000},"page":"105669","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":11,"special_numbering":"C","title":["Prediction of survival outcome based on clinical features and pretreatment 18FDG-PET\/CT for HNSCC patients"],"prefix":"10.1016","volume":"195","author":[{"given":"Sayantani","family":"Ghosh","sequence":"first","affiliation":[]},{"given":"Shaurav","family":"Maulik","sequence":"additional","affiliation":[]},{"given":"Sanjoy","family":"Chatterjee","sequence":"additional","affiliation":[]},{"given":"Indranil","family":"Mallick","sequence":"additional","affiliation":[]},{"given":"Nishant","family":"Chakravorty","sequence":"additional","affiliation":[]},{"given":"Jayanta","family":"Mukherjee","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.cmpb.2020.105669_sbref0001","series-title":"Genomic and Personalized Medicine (Second Edition)","first-page":"742","article-title":"Chapter 64 - head and neck cancer","author":"Thomas","year":"2013"},{"issue":"1","key":"10.1016\/j.cmpb.2020.105669_bib0002","doi-asserted-by":"crossref","first-page":"9","DOI":"10.1038\/nrc2982","article-title":"The molecular biology of head and neck cancer","volume":"11","author":"Leemans","year":"2011","journal-title":"Nature reviews cancer"},{"issue":"4","key":"10.1016\/j.cmpb.2020.105669_bib0003","doi-asserted-by":"crossref","first-page":"512","DOI":"10.1038\/sj.bjc.6600114","article-title":"Fdg\u2013pet. a possible prognostic factor in head and neck cancer","volume":"86","author":"Halfpenny","year":"2002","journal-title":"British journal of cancer"},{"issue":"4","key":"10.1016\/j.cmpb.2020.105669_bib0004","doi-asserted-by":"crossref","first-page":"462","DOI":"10.1002\/hed.21765","article-title":"Prognostic value of fluorine-18 fluorodeoxyglucose positron-emission tomography imaging in patients with head and neck squamous cell carcinoma","volume":"34","author":"Querellou","year":"2012","journal-title":"Head & neck"},{"issue":"5","key":"10.1016\/j.cmpb.2020.105669_bib0005","doi-asserted-by":"crossref","first-page":"1398","DOI":"10.1200\/JCO.2002.20.5.1398","article-title":"Standardized uptake value of 2-[(18) f] fluoro-2-deoxy-d-glucose in predicting outcome in head and neck carcinomas treated by radiotherapy with or without chemotherapy","volume":"20","author":"Allal","year":"2002","journal-title":"Journal of Clinical Oncology"},{"issue":"4","key":"10.1016\/j.cmpb.2020.105669_bib0006","doi-asserted-by":"crossref","first-page":"659","DOI":"10.1007\/s00259-013-2618-1","article-title":"Prognostic value of volumetric parameters measured by 18 f-fdg pet\/ct in patients with head and neck squamous cell carcinoma","volume":"41","author":"Abgral","year":"2014","journal-title":"European journal of nuclear medicine and molecular imaging"},{"issue":"2","key":"10.1016\/j.cmpb.2020.105669_bib0007","doi-asserted-by":"crossref","first-page":"495","DOI":"10.1002\/hed.25433","article-title":"Prognostic value of textural indices extracted from pretherapeutic 18-f fdg-pet\/ct in head and neck squamous cell carcinoma","volume":"41","author":"Guezennec","year":"2019","journal-title":"Head & neck"},{"issue":"1","key":"10.1016\/j.cmpb.2020.105669_bib0008","doi-asserted-by":"crossref","first-page":"15","DOI":"10.1002\/hed.22904","article-title":"Prognostic value of 18f-fdg pet\/ct in patients with squamous cell carcinoma of the tonsil: comparisons of volume-based metabolic parameters","volume":"35","author":"Moon","year":"2013","journal-title":"Head & neck"},{"issue":"2","key":"10.1016\/j.cmpb.2020.105669_bib0009","doi-asserted-by":"crossref","first-page":"187","DOI":"10.1111\/j.2517-6161.1972.tb00899.x","article-title":"Regression models and life-tables","volume":"34","author":"Cox","year":"1972","journal-title":"Journal of the Royal Statistical Society: Series B (Methodological)"},{"issue":"6","key":"10.1016\/j.cmpb.2020.105669_bib0010","doi-asserted-by":"crossref","first-page":"1471","DOI":"10.1245\/s10434-010-0985-4","article-title":"The american joint committee on cancer: the 7th edition of the ajcc cancer staging manual and the future of tnm","volume":"17","author":"Edge","year":"2010","journal-title":"Annals of surgical oncology"},{"issue":"3","key":"10.1016\/j.cmpb.2020.105669_bib0011","doi-asserted-by":"crossref","first-page":"367","DOI":"10.1016\/j.canep.2015.02.004","article-title":"Clinical features and prognostic factors in patients with head and neck cancer: Results from a multicentric study","volume":"39","author":"Leoncini","year":"2015","journal-title":"Cancer epidemiology"},{"issue":"6","key":"10.1016\/j.cmpb.2020.105669_bib0012","doi-asserted-by":"crossref","first-page":"458","DOI":"10.14639\/0392-100X-1246","article-title":"Prognostic factors in head and neck cancer: a 10-year retrospective analysis in a single-institution in italy","volume":"37","author":"Cadoni","year":"2017","journal-title":"Acta Otorhinolaryngologica Italica"},{"issue":"4","key":"10.1016\/j.cmpb.2020.105669_bib0013","doi-asserted-by":"crossref","first-page":"261","DOI":"10.1093\/jnci\/djn011","article-title":"Improved survival of patients with human papillomavirus\u2013positive head and neck squamous cell carcinoma in a prospective clinical trial","volume":"100","author":"Fakhry","year":"2008","journal-title":"Journal of the National Cancer Institute"},{"issue":"8","key":"10.1016\/j.cmpb.2020.105669_bib0014","doi-asserted-by":"crossref","first-page":"2746","DOI":"10.1245\/s10434-014-4284-3","article-title":"Intratumor textural heterogeneity on pretreatment 18 f-fdg pet images predicts response and survival after chemoradiotherapy for hypopharyngeal cancer","volume":"22","author":"Oh","year":"2015","journal-title":"Annals of surgical oncology"},{"issue":"6","key":"10.1016\/j.cmpb.2020.105669_bib0015","doi-asserted-by":"crossref","first-page":"1045","DOI":"10.1007\/s10278-013-9622-7","article-title":"The cancer imaging archive (tcia): maintaining and operating a public information repository","volume":"26","author":"Clark","year":"2013","journal-title":"Journal of digital imaging"},{"key":"10.1016\/j.cmpb.2020.105669_bib0016","first-page":"1801","article-title":"Imaging and clinical data archive for head and neck squamous cell carcinoma patients treated with radiotherapy","volume":"5","author":"Grossberg","year":"2018","journal-title":"Scientific data"},{"issue":"S1","key":"10.1016\/j.cmpb.2020.105669_bib0017","doi-asserted-by":"crossref","first-page":"E600","DOI":"10.1002\/hed.24048","article-title":"Prognostic evaluation of percentage variation of metabolic tumor burden calculated by dual-phase 18fdg pet-ct imaging in patients with head and neck cancer","volume":"38","author":"Abgral","year":"2016","journal-title":"Head & neck"},{"issue":"5","key":"10.1016\/j.cmpb.2020.105669_bib0018","doi-asserted-by":"crossref","first-page":"709","DOI":"10.2967\/jnumed.111.099531","article-title":"18f-fdg metabolic tumor volume and total glycolytic activity of oral cavity and oropharyngeal squamous cell cancer: adding value to clinical staging","volume":"53","author":"Dibble","year":"2012","journal-title":"Journal of Nuclear Medicine"},{"issue":"16","key":"10.1016\/j.cmpb.2020.105669_bib0019","doi-asserted-by":"crossref","first-page":"4786","DOI":"10.1158\/0008-5472.CAN-18-0125","article-title":"Lifex: a freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity","volume":"78","author":"Nioche","year":"2018","journal-title":"Cancer research"},{"issue":"2","key":"10.1016\/j.cmpb.2020.105669_bib0020","first-page":"122","article-title":"Head and neck cancersmajor changes in the american joint committee on cancer eighth edition cancer staging manual","volume":"67","author":"Lydiatt","year":"2017","journal-title":"CA: a cancer journal for clinicians"},{"issue":"6","key":"10.1016\/j.cmpb.2020.105669_bib0021","doi-asserted-by":"crossref","first-page":"610","DOI":"10.1109\/TSMC.1973.4309314","article-title":"Textural features for image classification","author":"Haralick","year":"1973","journal-title":"IEEE Transactions on systems, man, and cybernetics"},{"issue":"2","key":"10.1016\/j.cmpb.2020.105669_bib0022","doi-asserted-by":"crossref","first-page":"323","DOI":"10.1109\/41.192665","article-title":"The analysis of natural textures using run length features","volume":"35","author":"Loh","year":"1988","journal-title":"IEEE Transactions on Industrial Electronics"},{"issue":"3","key":"10.1016\/j.cmpb.2020.105669_bib0023","doi-asserted-by":"crossref","first-page":"341","DOI":"10.1016\/0734-189X(83)90032-4","article-title":"Neighboring gray level dependence matrix for texture classification","volume":"23","author":"Sun","year":"1983","journal-title":"Computer Vision, Graphics, and Image Processing"},{"key":"10.1016\/j.cmpb.2020.105669_bib0024","series-title":"10th International Conference on Pattern Recognition and Information Processing, PRIP 2009 Minsk, Belarus","first-page":"140","article-title":"Texture indexes and gray level size zone matrix. Application to cell nuclei classification","author":"Thibault","year":"2009"},{"issue":"1","key":"10.1016\/j.cmpb.2020.105669_bib0025","doi-asserted-by":"crossref","first-page":"81","DOI":"10.1186\/1471-2288-12-81","article-title":"To test or not to test: Preliminary assessment of normality when comparing two independent samples","volume":"12","author":"Rochon","year":"2012","journal-title":"BMC medical research methodology"},{"issue":"2","key":"10.1016\/j.cmpb.2020.105669_bib0026","doi-asserted-by":"crossref","first-page":"329","DOI":"10.1037\/0033-2909.106.2.329","article-title":"Statistical and empirical examination of the chi-square test for homogeneity of correlations in meta-analysis.","volume":"106","author":"Alexander","year":"1989","journal-title":"Psychological Bulletin"},{"key":"10.1016\/j.cmpb.2020.105669_bib0027","first-page":"2825","article-title":"Scikit-learn: Machine learning in Python","volume":"12","author":"Pedregosa","year":"2011","journal-title":"Journal of Machine Learning Research"},{"key":"10.1016\/j.cmpb.2020.105669_bib0028","unstructured":"C. Davidson-Pilon, J. Kalderstam, P. Zivich, B. Kuhn, A. Fiore-Gartland, AbdealiJK, L. Moneda, Gabriel, D. WIlson, A. Parij, K. Stark, S. Anton, L. Besson, Jona, H. Gadgil, D. Golland, S. Hussey, R. Kumar, J. Noorbakhsh, A. Klintberg, D. Albrecht, dhuynh, D. Medvinsky, D. Zgonjanin, D.S. Katz, D. Chen, C. Ahern, C. Fournier, Arturo, A.F. Rendeiro, Camdavidsonpilon\/lifelines: v0.22.8, 2019, 10.5281\/zenodo.3474134."},{"issue":"3","key":"10.1016\/j.cmpb.2020.105669_bib0029","doi-asserted-by":"crossref","first-page":"571","DOI":"10.1016\/S0360-3016(01)01690-X","article-title":"Randomized trial addressing risk features and time factors of surgery plus radiotherapy in advanced head-and-neck cancer","volume":"51","author":"Ang","year":"2001","journal-title":"International Journal of Radiation Oncology* Biology* Physics"},{"issue":"4","key":"10.1016\/j.cmpb.2020.105669_bib0030","first-page":"369","article-title":"Prognosis and predictive factors in head-and-neck cancers","volume":"96","author":"Cojocariu","year":"2009","journal-title":"Bulletin du cancer"},{"key":"10.1016\/j.cmpb.2020.105669_bib0031","doi-asserted-by":"crossref","first-page":"321","DOI":"10.1613\/jair.953","article-title":"Smote: synthetic minority over-sampling technique","volume":"16","author":"Chawla","year":"2002","journal-title":"Journal of artificial intelligence research"},{"issue":"5","key":"10.1016\/j.cmpb.2020.105669_bib0032","doi-asserted-by":"crossref","first-page":"757","DOI":"10.3892\/br.2013.140","article-title":"Comparison between artificial neural network and cox regression model in predicting the survival rate of gastric cancer patients","volume":"1","author":"Zhu","year":"2013","journal-title":"Biomedical reports"},{"issue":"1","key":"10.1016\/j.cmpb.2020.105669_bib0033","doi-asserted-by":"crossref","first-page":"44","DOI":"10.1186\/s12911-015-0165-3","article-title":"Predicting postoperative complications of head and neck squamous cell carcinoma in elderly patients using random forest algorithm model","volume":"15","author":"Chen","year":"2015","journal-title":"BMC medical informatics and decision making"}],"container-title":["Computer Methods and Programs in Biomedicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0169260720315029?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0169260720315029?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,8,10]],"date-time":"2024-08-10T08:33:41Z","timestamp":1723278821000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0169260720315029"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,10]]},"references-count":33,"alternative-id":["S0169260720315029"],"URL":"https:\/\/doi.org\/10.1016\/j.cmpb.2020.105669","relation":{},"ISSN":["0169-2607"],"issn-type":[{"type":"print","value":"0169-2607"}],"subject":[],"published":{"date-parts":[[2020,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Prediction of survival outcome based on clinical features and pretreatment 18FDG-PET\/CT for HNSCC patients","name":"articletitle","label":"Article Title"},{"value":"Computer Methods and Programs in Biomedicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cmpb.2020.105669","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"105669"}}