{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T06:43:00Z","timestamp":1725950580673},"reference-count":15,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,2,1]],"date-time":"2020-02-01T00:00:00Z","timestamp":1580515200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100003052","name":"Ministry of Trade, Industry and Energy","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100003052","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["clinicalkey.jp","clinicalkey.com","clinicalkey.es","clinicalkey.fr","clinicalkey.com.au","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computer Methods and Programs in Biomedicine"],"published-print":{"date-parts":[[2020,2]]},"DOI":"10.1016\/j.cmpb.2019.105119","type":"journal-article","created":{"date-parts":[[2019,10,4]],"date-time":"2019-10-04T11:03:23Z","timestamp":1570187003000},"page":"105119","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":25,"special_numbering":"C","title":["Fully automated 3D segmentation and separation of multiple cervical vertebrae in CT images using a 2D convolutional neural network"],"prefix":"10.1016","volume":"184","author":[{"given":"Hyun-Jin","family":"Bae","sequence":"first","affiliation":[]},{"given":"Heejung","family":"Hyun","sequence":"additional","affiliation":[]},{"given":"Younghwa","family":"Byeon","sequence":"additional","affiliation":[]},{"given":"Keewon","family":"Shin","sequence":"additional","affiliation":[]},{"given":"Yongwon","family":"Cho","sequence":"additional","affiliation":[]},{"given":"Young Ji","family":"Song","sequence":"additional","affiliation":[]},{"given":"Seong","family":"Yi","sequence":"additional","affiliation":[]},{"given":"Sung-Uk","family":"Kuh","sequence":"additional","affiliation":[]},{"given":"Jin S.","family":"Yeom","sequence":"additional","affiliation":[]},{"given":"Namkug","family":"Kim","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.cmpb.2019.105119_bib0001","doi-asserted-by":"crossref","first-page":"371","DOI":"10.1260\/2040-2295.4.3.371","article-title":"Challenges and methodologies of fully automatic whole heart segmentation: a review","volume":"4","author":"Zhuang","year":"2013","journal-title":"J. Healthc. Eng."},{"key":"10.1016\/j.cmpb.2019.105119_bib0002","series-title":"IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","first-page":"1209","article-title":"Robust and fully automated segmentation of mandible from CT scans","author":"Torosdagli","year":"2017"},{"key":"10.1016\/j.cmpb.2019.105119_bib0003","series-title":"The 18th Annual Meeting of the International Society for Computer Assisted Orthopaedic Surgery","first-page":"94","article-title":"Deep learning based segmentation of lumbar vertebrae from CT images","volume":"2","author":"Janssens","year":"2018"},{"key":"10.1016\/j.cmpb.2019.105119_bib0004","doi-asserted-by":"crossref","first-page":"471","DOI":"10.1016\/j.media.2009.02.004","article-title":"Automated model-based vertebra detection, identification, and segmentation in CT images","volume":"13","author":"Klinder","year":"2009","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.cmpb.2019.105119_bib0005","doi-asserted-by":"crossref","first-page":"343","DOI":"10.1016\/j.compmedimag.2009.02.006","article-title":"A fully automatic vertebra segmentation method using 3D deformable fences","volume":"33","author":"Kim","year":"2009","journal-title":"Comput. Med. Imaging Graph."},{"key":"10.1016\/j.cmpb.2019.105119_bib0006","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/1475-925X-12-S1-S1","article-title":"An improved level set method for vertebra CT image segmentation","volume":"12","author":"Huang","year":"2013","journal-title":"Biomed. Eng. Online"},{"key":"10.1016\/j.cmpb.2019.105119_bib0007","series-title":"Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2015","article-title":"U-Net: convolutional networks for biomedical image segmentation","author":"Ronneberger","year":"2015"},{"key":"10.1016\/j.cmpb.2019.105119_bib0008","series-title":"Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2016","article-title":"3D U-Net: learning dense volumetric segmentation from sparse annotation","author":"\u00c7i\u00e7ek","year":"2016"},{"key":"10.1016\/j.cmpb.2019.105119_bib0009","unstructured":"D.P. Kingma, J.L. Ba, ADAM: A method for stochastic optimization International Conference on Learning Representations (ICLR), 2015. arXiv:1412.6980."},{"key":"10.1016\/j.cmpb.2019.105119_bib0010","doi-asserted-by":"crossref","first-page":"297","DOI":"10.2307\/1932409","article-title":"Measures of the amount of ecologic association between species","volume":"26","author":"Dice","year":"1945","journal-title":"Ecology"},{"key":"10.1016\/j.cmpb.2019.105119_bib0011","unstructured":"F. Chollet, 2015. Keras (https:\/\/github.com\/keras-team\/keras)"},{"key":"10.1016\/j.cmpb.2019.105119_bib0012","unstructured":"A. Mart\u00edn, et\u00a0al. 2015.TensorFlow: Large-scale machine learning on heterogeneous systems (https:\/\/tensorflow.org)"},{"key":"10.1016\/j.cmpb.2019.105119_bib0013","series-title":"Python Tutorial","author":"Van Rossum","year":"1995"},{"key":"10.1016\/j.cmpb.2019.105119_bib0014","doi-asserted-by":"crossref","first-page":"29","DOI":"10.1186\/s12880-015-0068-x","article-title":"Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool","volume":"15","author":"Taha","year":"2015","journal-title":"BMC Med. Imaging"},{"key":"10.1016\/j.cmpb.2019.105119_bib0015","doi-asserted-by":"crossref","DOI":"10.1118\/1.4810971","article-title":"Tissue segmentation of head and neck CT images for treatment planning: a multiatlas approach combined with intensity modeling","volume":"40","author":"Fortunati","year":"2013","journal-title":"Med. Phys."}],"container-title":["Computer Methods and Programs in Biomedicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0169260719312246?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0169260719312246?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2021,1,23]],"date-time":"2021-01-23T16:59:58Z","timestamp":1611421198000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0169260719312246"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,2]]},"references-count":15,"alternative-id":["S0169260719312246"],"URL":"https:\/\/doi.org\/10.1016\/j.cmpb.2019.105119","relation":{},"ISSN":["0169-2607"],"issn-type":[{"value":"0169-2607","type":"print"}],"subject":[],"published":{"date-parts":[[2020,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Fully automated 3D segmentation and separation of multiple cervical vertebrae in CT images using a 2D convolutional neural network","name":"articletitle","label":"Article Title"},{"value":"Computer Methods and Programs in Biomedicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cmpb.2019.105119","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"105119"}}