{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,3]],"date-time":"2024-08-03T22:49:28Z","timestamp":1722725368969},"reference-count":49,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2019,12,1]],"date-time":"2019-12-01T00:00:00Z","timestamp":1575158400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"name":"Lesser Enterprise Center, Krakow, Poland"}],"content-domain":{"domain":["clinicalkey.jp","clinicalkey.com","clinicalkey.es","clinicalkey.fr","clinicalkey.com.au","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computer Methods and Programs in Biomedicine"],"published-print":{"date-parts":[[2019,12]]},"DOI":"10.1016\/j.cmpb.2019.105052","type":"journal-article","created":{"date-parts":[[2019,8,24]],"date-time":"2019-08-24T21:36:16Z","timestamp":1566682576000},"page":"105052","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":9,"special_numbering":"C","title":["Using Lempel-Ziv complexity as effective classification tool of the sleep-related breathing disorders"],"prefix":"10.1016","volume":"182","author":[{"given":"Agnieszka","family":"Pregowska","sequence":"first","affiliation":[]},{"given":"Klaudia","family":"Proniewska","sequence":"additional","affiliation":[]},{"given":"Peter","family":"van Dam","sequence":"additional","affiliation":[]},{"given":"Janusz","family":"Szczepanski","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"6156","key":"10.1016\/j.cmpb.2019.105052_bib0001","doi-asserted-by":"crossref","first-page":"373","DOI":"10.1126\/science.1241224","article-title":"Sleep drives metabolite clearance from the adult brain","volume":"342","author":"Xie","year":"2013","journal-title":"Science"},{"key":"10.1016\/j.cmpb.2019.105052_bib0002","doi-asserted-by":"crossref","first-page":"687","DOI":"10.1126\/science.aad2993","article-title":"Local modulation of human brain responses by circadian rhythmicity and sleep debt","volume":"353","author":"Muto","year":"2016","journal-title":"Science"},{"key":"10.1016\/j.cmpb.2019.105052_bib0003","doi-asserted-by":"crossref","first-page":"460","DOI":"10.3389\/fphys.2016.00460","article-title":"Modulations of heart rate, ECG, and cardio-respiratory coupling observed in polysomnography","volume":"7","author":"Penzel","year":"2016","journal-title":"Front. Physiol."},{"issue":"4","key":"10.1016\/j.cmpb.2019.105052_bib0004","doi-asserted-by":"crossref","first-page":"471","DOI":"10.1093\/sleep\/23.4.471","article-title":"Sleep disorders in regional sleep centers: a national cooperative study Coleman II Study Investigators","volume":"23","author":"Punjabi","year":"2000","journal-title":"Sleep"},{"issue":"5","key":"10.1016\/j.cmpb.2019.105052_bib0005","doi-asserted-by":"crossref","first-page":"1387","DOI":"10.1378\/chest.14-0970","article-title":"International classification of sleep disorders-third edition. highlights and modifications","volume":"146","author":"Sateia","year":"2014","journal-title":"Chest"},{"key":"10.1016\/j.cmpb.2019.105052_bib0006","doi-asserted-by":"crossref","first-page":"265","DOI":"10.1016\/j.cmpb.2017.01.001","article-title":"Classification techniques on computerized systems to predict and\/or to detect Apnea: a systematic review","volume":"140","author":"Pombo","year":"2017","journal-title":"Comput. Methods Programs Biomed."},{"issue":"6","key":"10.1016\/j.cmpb.2019.105052_bib0007","doi-asserted-by":"crossref","first-page":"1936","DOI":"10.1378\/chest.06-2334","article-title":"Sleep-related hypoventilation\/hypoxemic syndromes","volume":"131","author":"Cassey","year":"2007","journal-title":"Chest"},{"key":"10.1016\/j.cmpb.2019.105052_bib0008","first-page":"199","article-title":"Hypoxemia in patients with COPD: cause, effects, and disease progression","volume":"6","author":"Kent","year":"2011","journal-title":"Int. J. Chron. Obstruct. Pulmon. Dis."},{"key":"10.1016\/j.cmpb.2019.105052_bib0009","doi-asserted-by":"crossref","first-page":"125","DOI":"10.1016\/j.cmpb.2018.04.021","article-title":"Shearlet and contourlet transforms for analysis of electrocardiogram signals","volume":"161","author":"Amorim","year":"2018","journal-title":"Comput. Methods Programs Biomed."},{"issue":"4","key":"10.1016\/j.cmpb.2019.105052_bib0010","doi-asserted-by":"crossref","first-page":"295","DOI":"10.1142\/S0129065709002002","article-title":"Spiking neural, networks","volume":"19","author":"Ghosh-Dastidar","year":"2009","journal-title":"Int. J. Neural Syst."},{"key":"10.1016\/j.cmpb.2019.105052_bib0011","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.cmpb.2018.04.005","article-title":"Deep learning for healthcare applications based on physiological signals: a review","volume":"161","author":"Faust","year":"2018","journal-title":"Comput. Methods Programs Biomed."},{"issue":"1","key":"10.1016\/j.cmpb.2019.105052_bib0012","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0190458","article-title":"Sleep in patients with disorders of consciousness characterized by means of machine learning","volume":"13","author":"Wielek","year":"2018","journal-title":"PLoS ONE"},{"key":"10.1016\/j.cmpb.2019.105052_bib0013","series-title":"Automated EEG-based Diagnosis of Neurological Disorders - Inventing the Future of Neurology","author":"Adeli","year":"2010"},{"key":"10.1016\/j.cmpb.2019.105052_bib0014","doi-asserted-by":"crossref","first-page":"181","DOI":"10.1016\/j.cmpb.2018.07.015","article-title":"Complex-valued unsupervised convolutional neural networks for sleep stage classification","volume":"164","author":"Zhang","year":"2018","journal-title":"Comput. Methods Programs Biomed."},{"key":"10.1016\/j.cmpb.2019.105052_bib0015","doi-asserted-by":"crossref","first-page":"79","DOI":"10.1016\/j.cmpb.2008.05.006","article-title":"Utility of multilayer perceptron neural network classifiers in the diagnosis of the obstructive sleep apnoea syndrome from nocturnal oximetry","volume":"92","author":"V\u00edctor Marcos","year":"2008","journal-title":"Comput. Methods Programs Biomed."},{"key":"10.1016\/j.cmpb.2019.105052_bib0016","doi-asserted-by":"crossref","first-page":"625","DOI":"10.1007\/s40846-016-0165-5","article-title":"Using Lempel\u2013Ziv complexity to assess ECG signal quality","volume":"36","author":"Zhang","year":"2016","journal-title":"J. Med. Biol. Eng."},{"issue":"12","key":"10.1016\/j.cmpb.2019.105052_bib0017","doi-asserted-by":"crossref","first-page":"673","DOI":"10.3390\/e19120673","article-title":"Characterisation of the effects of sleep deprivation on the electroencephalogram using permutation Lempel\u2013Ziv complexity, a non-linear analysis tool","volume":"19","author":"Tosun","year":"2017","journal-title":"Entropy"},{"issue":"4","key":"10.1016\/j.cmpb.2019.105052_bib0018","doi-asserted-by":"crossref","first-page":"141","DOI":"10.3390\/e19040141","article-title":"Permutation entropy for the characterisation of brain activity recorded with magnetoencephalograms in healthy ageing","volume":"19","author":"Shumbayawonda","year":"2017","journal-title":"Entropy"},{"key":"10.1016\/j.cmpb.2019.105052_bib0019","doi-asserted-by":"crossref","DOI":"10.1155\/2018\/1324696","article-title":"Patterns with equal values in permutation entropy: do they really matter for biosignal classification?","author":"Cuesta\u2013Frau","year":"2018","journal-title":"Complexity"},{"key":"10.1016\/j.cmpb.2019.105052_bib0020","doi-asserted-by":"crossref","first-page":"75","DOI":"10.1109\/TIT.1976.1055501","article-title":"On the complexity of finite sequences","volume":"22","author":"Ziv","year":"1976","journal-title":"IEEE Trans. Inf. Theory"},{"issue":"11","key":"10.1016\/j.cmpb.2019.105052_bib0021","doi-asserted-by":"crossref","first-page":"2282","DOI":"10.1109\/TBME.2006.883696","article-title":"Interpretation of the Lempel\u2013Ziv complexity measure in the context of biomedical signal analysis","volume":"53","author":"Aboy","year":"2006","journal-title":"IEEE Trans. Biomed. Eng."},{"key":"10.1016\/j.cmpb.2019.105052_bib0022","doi-asserted-by":"crossref","first-page":"7","DOI":"10.1016\/j.cmpb.2016.05.010","article-title":"A novel encoding Lempel\u2013Ziv complexity algorithm for quantifying the irregularity of physiological time series","volume":"133","author":"Zhang","year":"2016","journal-title":"Comput. Methods Programs Biomed."},{"key":"10.1016\/j.cmpb.2019.105052_bib0023","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1016\/j.cmpb.2017.11.023","article-title":"Methods for classifying depression in single channel EEG using linear and nonlinear signal analysis","volume":"155","author":"Bachmann","year":"2018","journal-title":"Comput. Methods Programs Biomed."},{"key":"10.1016\/j.cmpb.2019.105052_bib0024","doi-asserted-by":"crossref","first-page":"13","DOI":"10.1111\/j.1365-2869.2012.01031.x","article-title":"Information content in cortical spike trains during brain state transitions","volume":"22","author":"Arnold","year":"2013","journal-title":"J. Sleep Res."},{"issue":"0","key":"10.1016\/j.cmpb.2019.105052_bib0025","article-title":"How far can neural correlations reduce uncertainty? Comparison of information transmission rates for Markov and Bernoulli processes","volume":"9","author":"Pregowska","year":"2019","journal-title":"Int. J. Neural Syst."},{"key":"10.1016\/j.cmpb.2019.105052_bib0026","doi-asserted-by":"crossref","first-page":"453","DOI":"10.1007\/s00422-019-00801-0","article-title":"Information processing in the LGN: a comparison of neural codes and cell types","volume":"113","author":"Pregowska","year":"2019","journal-title":"Biol. Cybern."},{"key":"10.1016\/j.cmpb.2019.105052_bib0027","first-page":"153","article-title":"Classification of sleep disordered breathing in the evaluation of acoustic sound in correlation with the ECG signal","volume":"41","author":"Proniewska","year":"2014","journal-title":"Comput. Cardiol. Conf."},{"issue":"1","key":"10.1016\/j.cmpb.2019.105052_bib0028","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1515\/bams-2017-0003","article-title":"Sleep-related breathing biomarkers as a predictor of vital functions","volume":"13","author":"Proniewska","year":"2017","journal-title":"Bio-Algorithms Med-Syst."},{"issue":"12","key":"10.1016\/j.cmpb.2019.105052_bib0029","doi-asserted-by":"crossref","first-page":"2606","DOI":"10.1109\/TBME.2006.883825","article-title":"Analysis of biomedical signals by the Lempel\u2013Ziv complexity: the effect of finite data size","volume":"53","author":"Hu","year":"2006","journal-title":"IEEE Trans. Biomed. Eng."},{"issue":"23","key":"10.1016\/j.cmpb.2019.105052_bib0030","doi-asserted-by":"crossref","first-page":"e215","DOI":"10.1161\/01.CIR.101.23.e215","article-title":"PhysioBank, PhysioToolkit, and physioNet: components of a new research resource for complex physiologic signals","volume":"101","author":"Goldberger","year":"2000","journal-title":"Circulation"},{"issue":"5","key":"10.1016\/j.cmpb.2019.105052_bib0031","doi-asserted-by":"crossref","first-page":"1151","DOI":"10.5665\/sleep.5774","article-title":"Scaling up scientific discovery in sleep medicine: the national sleep research resource","volume":"39","author":"Dean","year":"2016","journal-title":"Sleep"},{"issue":"10","key":"10.1016\/j.cmpb.2019.105052_bib0032","doi-asserted-by":"crossref","first-page":"1351","DOI":"10.1093\/jamia\/ocy064","article-title":"The national sleep research resource: towards a sleep data commons","volume":"25","author":"Zhang","year":"2018","journal-title":"J. Am. Med. Inf. Assoc."},{"issue":"12","key":"10.1016\/j.cmpb.2019.105052_bib0033","first-page":"1077","article-title":"The sleep heart health study: design, rationale, and methods","volume":"20","author":"Quan","year":"1997","journal-title":"Sleep"},{"issue":"7","key":"10.1016\/j.cmpb.2019.105052_bib0034","doi-asserted-by":"crossref","first-page":"759","DOI":"10.1093\/sleep\/21.7.759","article-title":"Methods for obtaining and analyzing unattended polysomnography data for a multicenter study. sleep heart health research group","volume":"21","author":"Redline","year":"1998","journal-title":"Sleep"},{"key":"10.1016\/j.cmpb.2019.105052_bib0035","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1088\/0967-3334\/31\/3\/001","article-title":"Automatic screening of obstructive sleep apnea from the ECG based on empirical mode decomposition and wavelet analysis","volume":"31","author":"Mendez","year":"2010","journal-title":"Physiol. Meas."},{"issue":"7","key":"10.1016\/j.cmpb.2019.105052_bib0036","doi-asserted-by":"crossref","first-page":"1279","DOI":"10.1007\/s11760-016-0897-2","article-title":"Extraction of breathing features using MS Kinect for sleep stage detection","volume":"10","author":"Prochazka","year":"2016","journal-title":"Signal Image Video Process."},{"issue":"5","key":"10.1016\/j.cmpb.2019.105052_bib0037","doi-asserted-by":"crossref","first-page":"2682","DOI":"10.1118\/1.4704644","article-title":"A real-time respiratory motion monitoring system using KINECT: proof of concept","volume":"39","author":"Xia","year":"2012","journal-title":"Med. Phys."},{"issue":"7","key":"10.1016\/j.cmpb.2019.105052_bib0038","doi-asserted-by":"crossref","first-page":"2742","DOI":"10.1152\/jn.00575.2014","article-title":"Lempel-Ziv complexity of cortical activity during sleep and waking in rats","volume":"113","author":"Ab\u00e1solo","year":"2015","journal-title":"J. Neurophysiol."},{"key":"10.1016\/j.cmpb.2019.105052_bib0039","doi-asserted-by":"crossref","first-page":"102","DOI":"10.1016\/j.bspc.2015.04.002","article-title":"A permutation Lempel\u2013Ziv complexity measure for eeg analysis","volume":"19","author":"Bai","year":"2015","journal-title":"Biomed. Signal Process. Control."},{"issue":"4","key":"10.1016\/j.cmpb.2019.105052_bib0040","doi-asserted-by":"crossref","first-page":"399","DOI":"10.1088\/0967-3334\/27\/4\/006","article-title":"Nonlinear characteristics of blood oxygen saturation from nocturnal oximetry for obstructive sleep apnoea detection","volume":"27","author":"Alarez","year":"2006","journal-title":"Physiol. Meas."},{"key":"10.1016\/j.cmpb.2019.105052_bib0041","doi-asserted-by":"crossref","first-page":"47","DOI":"10.1016\/j.cmpb.2013.06.007","article-title":"Automatic sleep staging using empirical mode decomposition, discrete wavelet transform, time-domain, and nonlinear dynamics features of heart rate variability signals","volume":"112","author":"Ebrahimia","year":"2013","journal-title":"Comput. Methods Programs Biomed."},{"issue":"12","key":"10.1016\/j.cmpb.2019.105052_bib0042","doi-asserted-by":"crossref","first-page":"2935","DOI":"10.1007\/s10439-011-0416-0","article-title":"Complexity analysis of resting-state MEG activity in early-stage Parkinson's disease patients","volume":"39","author":"G\u00f3mez","year":"2011","journal-title":"Ann. Biomed. Eng."},{"key":"10.1016\/j.cmpb.2019.105052_bib0043","doi-asserted-by":"crossref","first-page":"317","DOI":"10.1098\/rsta.2008.0197","article-title":"Nonlinear analysis of electroencephalogram and magnetoencephalogram recordings in patients with Alzheimer's disease","volume":"367","author":"Hornero","year":"2009","journal-title":"Philos. Trans. R. Soc. A"},{"key":"10.1016\/j.cmpb.2019.105052_bib0044","doi-asserted-by":"crossref","DOI":"10.4061\/2011\/539621","article-title":"Slowing and loss of complexity in Alzheimer's EEG: two sides of the same coin?","author":"Dauwels","year":"2011","journal-title":"Int. J. Alzheimers Dis."},{"issue":"1","key":"10.1016\/j.cmpb.2019.105052_bib0045","doi-asserted-by":"crossref","first-page":"175","DOI":"10.1109\/JBHI.2018.2790968","article-title":"Sliding trend fuzzy approximate entropy as a novel descriptor of heart rate variability in obstructive sleep apnea","volume":"23","author":"Li","year":"2019","journal-title":"IEEE J. Biomed. Health Inform."},{"issue":"2011","key":"10.1016\/j.cmpb.2019.105052_bib0046","doi-asserted-by":"crossref","first-page":"139","DOI":"10.1504\/IJBET.2018.093102","article-title":"Ensemble classification approach for screening of obstructive sleep apnoea using ECG","volume":"27","author":"Banu Rekha","year":"2018","journal-title":"Int. J. Biomed. Eng. Technol."},{"key":"10.1016\/j.cmpb.2019.105052_bib0047","doi-asserted-by":"crossref","first-page":"159","DOI":"10.1016\/j.cmpb.2018.07.010","article-title":"A topological approach to delineation and arrhythmic beats detection in unprocessed long-term ECG signals","volume":"164","author":"Pucer","year":"2018","journal-title":"Comput. Methods Programs Biomed."},{"key":"10.1016\/j.cmpb.2019.105052_bib0048","doi-asserted-by":"crossref","first-page":"22","DOI":"10.1016\/j.bspc.2016.05.009","article-title":"Computer-aided obstructive sleep apnea detection using normal inverse Gaussian parameters and adaptive boosting","volume":"29","author":"Hassan","year":"2016","journal-title":"Biomed. Signal Process Control."},{"issue":"4","key":"10.1016\/j.cmpb.2019.105052_bib0049","doi-asserted-by":"crossref","first-page":"1021","DOI":"10.1007\/s11325-018-1623-9","article-title":"Detection of sleep-disordered breathing with ambulatory Holter monitoring","volume":"22","author":"Grasso","year":"2018","journal-title":"Sleep and Breath."}],"container-title":["Computer Methods and Programs in Biomedicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0169260719301427?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0169260719301427?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,9,19]],"date-time":"2023-09-19T12:08:22Z","timestamp":1695125302000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0169260719301427"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,12]]},"references-count":49,"alternative-id":["S0169260719301427"],"URL":"https:\/\/doi.org\/10.1016\/j.cmpb.2019.105052","relation":{},"ISSN":["0169-2607"],"issn-type":[{"value":"0169-2607","type":"print"}],"subject":[],"published":{"date-parts":[[2019,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Using Lempel-Ziv complexity as effective classification tool of the sleep-related breathing disorders","name":"articletitle","label":"Article Title"},{"value":"Computer Methods and Programs in Biomedicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cmpb.2019.105052","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"105052"}}