{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,15]],"date-time":"2024-07-15T15:53:24Z","timestamp":1721058804333},"reference-count":57,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2018,8,1]],"date-time":"2018-08-01T00:00:00Z","timestamp":1533081600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61502091"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["clinicalkey.jp","clinicalkey.com","clinicalkey.es","clinicalkey.fr","clinicalkey.com.au","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computer Methods and Programs in Biomedicine"],"published-print":{"date-parts":[[2018,8]]},"DOI":"10.1016\/j.cmpb.2018.04.028","type":"journal-article","created":{"date-parts":[[2018,5,3]],"date-time":"2018-05-03T17:13:13Z","timestamp":1525367593000},"page":"19-45","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":23,"special_numbering":"C","title":["Generalized fused group lasso regularized multi-task feature learning for predicting cognitive outcomes in Alzheimers disease"],"prefix":"10.1016","volume":"162","author":[{"given":"Peng","family":"Cao","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2274-6180","authenticated-orcid":false,"given":"Xiaoli","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Hezi","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Jinzhu","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Dazhe","family":"Zhao","sequence":"additional","affiliation":[]},{"given":"Min","family":"Huang","sequence":"additional","affiliation":[]},{"given":"Osmar","family":"Zaiane","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"4","key":"10.1016\/j.cmpb.2018.04.028_bib0001","doi-asserted-by":"crossref","first-page":"459","DOI":"10.1016\/j.jalz.2016.03.001","article-title":"2016 Alzheimer\u2019s disease facts and figures","volume":"12","author":"Alzheimer\u2019s Association","year":"2016","journal-title":"Alzheimer Dementia"},{"issue":"3","key":"10.1016\/j.cmpb.2018.04.028_bib0002","doi-asserted-by":"crossref","first-page":"243","DOI":"10.1007\/s10994-007-5040-8","article-title":"Convex multi-task feature learning","volume":"73","author":"Argyriou","year":"2008","journal-title":"Mach. Learn."},{"key":"10.1016\/j.cmpb.2018.04.028_bib0003","series-title":"World Alzheimer Report 2012: Overcoming the Stigma of Dementia","author":"Batsch","year":"2015"},{"key":"10.1016\/j.cmpb.2018.04.028_bib0004","series-title":"Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"82","article-title":"Domain transfer learning for MCI conversion prediction","author":"Bo","year":"2012"},{"key":"10.1016\/j.cmpb.2018.04.028_bib0005","first-page":"1","article-title":"Distributed optimization and statistical learning via the alternating direction method of multipliers","author":"Boyd","year":"2011","journal-title":"Found. Trends Mach. Learn."},{"key":"10.1016\/j.cmpb.2018.04.028_bib0006","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2017.07.018","article-title":"Sparse shared structure based multi-task learning for MRI based cognitive performance prediction of alzheimers disease","volume":"72","author":"Cao","year":"2017","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.cmpb.2018.04.028_bib0007","series-title":"Learning to Learn","first-page":"95","article-title":"Multitask learning","author":"Caruana","year":"1998"},{"issue":"9","key":"10.1016\/j.cmpb.2018.04.028_bib0008","doi-asserted-by":"crossref","first-page":"484","DOI":"10.1016\/j.disamonth.2010.06.001","article-title":"Alzheimer disease","volume":"56","author":"Castellani","year":"2010","journal-title":"Disease-a-Month DM"},{"key":"10.1016\/j.cmpb.2018.04.028_bib0009","series-title":"Proceedings of the Seventeenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","first-page":"42","article-title":"Integrating low-rank and group-sparse structures for robust multi-task learning","author":"Chen","year":"2011"},{"key":"10.1016\/j.cmpb.2018.04.028_bib0010","series-title":"Proceedings of the Panhellenic Conference on Advances in Informatics","first-page":"448","article-title":"Protein classification with multiple algorithms","author":"Diplaris","year":"2005"},{"issue":"3\u20134","key":"10.1016\/j.cmpb.2018.04.028_bib0011","doi-asserted-by":"crossref","first-page":"265","DOI":"10.1007\/s00429-010-0283-8","article-title":"Atrophy in the parahippocampal gyrus as an early biomarker of alzheimers disease","volume":"215","author":"Ech\u00e1varri","year":"2011","journal-title":"Brain Structure and Function"},{"key":"10.1016\/j.cmpb.2018.04.028_bib0012","series-title":"Proceedings of the International Conference on Neural Information Processing Systems: Natural and Synthetic","first-page":"681","article-title":"A kernel method for multi-labelled classification","author":"Elisseeff","year":"2001"},{"issue":"2","key":"10.1016\/j.cmpb.2018.04.028_bib0013","doi-asserted-by":"crossref","first-page":"67","DOI":"10.1038\/nrneurol.2009.215","article-title":"The clinical use of structural MRI in Alzheimer disease","volume":"6","author":"Frisoni","year":"2010","journal-title":"Nat. Rev. Neurol."},{"key":"10.1016\/j.cmpb.2018.04.028_bib0014","series-title":"Proceedings of the Conference on Information and Knowledge Management, CIKM","first-page":"451","article-title":"Multi-task sparse structure learning","author":"Goncalves","year":"2014"},{"key":"10.1016\/j.cmpb.2018.04.028_bib0015","first-page":"2211","article-title":"Multiple kernel learning algorithms","volume":"12","author":"G\u00f6nen","year":"2011","journal-title":"Journal of machine learning research"},{"issue":"8","key":"10.1016\/j.cmpb.2018.04.028_sbref0016","doi-asserted-by":"crossref","first-page":"1304","DOI":"10.1016\/j.neurobiolaging.2010.04.026","article-title":"Subregions of the inferior parietal lobule are affected in the progression to Alzheimer\u2019s disease","volume":"31","author":"Greene","year":"2010","journal-title":"Neurobiol. Aging"},{"key":"10.1016\/j.cmpb.2018.04.028_bib0017","first-page":"1","article-title":"A robust regularization path algorithm for \u03bd-support vector classification","volume":"PP","author":"Gu","year":"2016","journal-title":"IEEE Trans. Neural Netw. Learn Syst."},{"issue":"7","key":"10.1016\/j.cmpb.2018.04.028_bib0018","doi-asserted-by":"crossref","first-page":"1403","DOI":"10.1109\/TNNLS.2014.2342533","article-title":"Incremental support vector learning for ordinal regression","volume":"26","author":"Gu","year":"2015","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.cmpb.2018.04.028_sbref0019","doi-asserted-by":"crossref","first-page":"S69","DOI":"10.1016\/j.neurobiolaging.2014.05.038","article-title":"Empowering imaging biomarkers of Alzheimer\u2019s disease","volume":"36","author":"Gutman","year":"2015","journal-title":"Neurobiol. Aging"},{"issue":"3","key":"10.1016\/j.cmpb.2018.04.028_bib0020","doi-asserted-by":"crossref","first-page":"352","DOI":"10.1016\/j.jkss.2014.10.002","article-title":"Some properties of generalized fused lasso and its applications to high dimensional data","volume":"44","author":"Jang","year":"2015","journal-title":"J. Korean Stat. Soc."},{"key":"10.1016\/j.cmpb.2018.04.028_bib0021","series-title":"Proceedings of the Twenty-sixth Annual International Conference on Machine learning","first-page":"457","article-title":"An accelerated gradient method for trace norm minimization","author":"Ji","year":"2009"},{"issue":"3","key":"10.1016\/j.cmpb.2018.04.028_bib0022","first-page":"264","article-title":"Temporally constrained group sparse learning for longitudinal data analysis in Alzheimer\u2019s disease","volume":"15","author":"Jie","year":"2016","journal-title":"IEEE Trans. Biomed. Eng."},{"issue":"2","key":"10.1016\/j.cmpb.2018.04.028_bib0023","doi-asserted-by":"crossref","first-page":"489","DOI":"10.1002\/hbm.22642","article-title":"Manifold regularized multitask feature learning for multimodality disease classification","volume":"36","author":"Jie","year":"2015","journal-title":"Hum. Brain Mapp."},{"issue":"3","key":"10.1016\/j.cmpb.2018.04.028_bib0024","doi-asserted-by":"crossref","first-page":"681","DOI":"10.1093\/brain\/awm319","article-title":"Automatic classification of mr scans in Alzheimer\u2019s disease","volume":"131","author":"Klppel","year":"2008","journal-title":"Brain"},{"key":"10.1016\/j.cmpb.2018.04.028_bib0025","doi-asserted-by":"crossref","first-page":"466","DOI":"10.1016\/j.neuroimage.2013.09.015","article-title":"Inter-modality relationship constrained multi-modality multi-task feature selection for Alzheimer\u2019s disease and mild cognitive impairment identification","volume":"84","author":"Liu","year":"2014","journal-title":"Neuroimage"},{"key":"10.1016\/j.cmpb.2018.04.028_bib0026","series-title":"Proceedings of the Twenty-fifth Conference on Uncertainty in Artificial Intelligence","first-page":"339","article-title":"Multi-task feature learning via efficient \u21132, 1-norm minimization","author":"Liu","year":"2009"},{"key":"10.1016\/j.cmpb.2018.04.028_bib0027","unstructured":"X. Liu, P. Cao, J. Yang, D. Zhao, O. Zaiane, Group guided sparse group lasso multi-task learning for cognitive performance prediction of Alzheimers disease, in: Proceedings of the International Conference on Brain Informatics, Beijing, China,"},{"key":"10.1016\/j.cmpb.2018.04.028_bib0028","article-title":"Modeling Alzheimer\u2019s disease cognitive scores using multi-task sparse group lasso","author":"Liu","year":"2017","journal-title":"Comput. Med. Imag. Graph."},{"issue":"4","key":"10.1016\/j.cmpb.2018.04.028_bib0029","doi-asserted-by":"crossref","first-page":"303","DOI":"10.1007\/s13748-012-0030-x","article-title":"Binary relevance efficacy for multilabel classification","volume":"1","author":"Luaces","year":"2012","journal-title":"Progress Artif. Intell."},{"issue":"3","key":"10.1016\/j.cmpb.2018.04.028_bib0030","doi-asserted-by":"crossref","first-page":"1019","DOI":"10.1016\/j.patcog.2011.08.011","article-title":"Two stage architecture for multi-label learning","volume":"45","author":"Madjarov","year":"2014","journal-title":"Pattern Recognit."},{"issue":"9","key":"10.1016\/j.cmpb.2018.04.028_bib0031","doi-asserted-by":"crossref","first-page":"3084","DOI":"10.1016\/j.patcog.2012.03.004","article-title":"An extensive experimental comparison of methods for multi-label learning","volume":"45","author":"Madjarov","year":"2012","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.cmpb.2018.04.028_bib0032","series-title":"Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence","article-title":"Bagging ensembles for the diagnosis and prognostication of Alzheimers disease","author":"Peng","year":"2016"},{"key":"10.1016\/j.cmpb.2018.04.028_bib0033","series-title":"Proceedings of the Workshop on Biological, Translational, and Clinical Language Processing BIONLP 2007","first-page":"97","article-title":"A shared task involving multi-label classification of clinical free text","author":"Pestian","year":"2007"},{"issue":"4","key":"10.1016\/j.cmpb.2018.04.028_sbref0033","doi-asserted-by":"crossref","first-page":"1405","DOI":"10.1016\/j.neuroimage.2010.03.051","article-title":"Predicting clinical scores from magnetic resonance scans in Alzheimer\u2019s disease","volume":"51","author":"Stonnington","year":"2010","journal-title":"Neuroimage"},{"issue":"1","key":"10.1016\/j.cmpb.2018.04.028_bib0035","doi-asserted-by":"crossref","first-page":"91","DOI":"10.1111\/j.1467-9868.2005.00490.x","article-title":"Sparsity and smoothness via the fused lasso","volume":"67","author":"Tibshirani","year":"2010","journal-title":"J. R. Stat. Soc."},{"issue":"3","key":"10.1016\/j.cmpb.2018.04.028_bib0036","article-title":"Multi-label classification: an overview","volume":"3","author":"Tsoumakas","year":"2006","journal-title":"Int. J. Data Warehouse. Min."},{"issue":"1","key":"10.1016\/j.cmpb.2018.04.028_bib0037","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1002\/hipo.450010102","article-title":"Entorhinal cortex pathology in Alzheimer\u2019s disease","volume":"1","author":"van Hoesen","year":"1991","journal-title":"Hippocampus"},{"issue":"4","key":"10.1016\/j.cmpb.2018.04.028_bib0038","first-page":"491","article-title":"Medial temporal lobe atrophy predicts Alzheimer\u2019s disease in patients with minor cognitive impairment","volume":"72","author":"Visser","year":"2002","journal-title":"J. Neurol. Neurosurg. Psych."},{"issue":"7","key":"10.1016\/j.cmpb.2018.04.028_bib0039","doi-asserted-by":"crossref","first-page":"1475","DOI":"10.1109\/TMI.2014.2314712","article-title":"Identifying the neuroanatomical basis of cognitive impairment in Alzheimer\u2019s disease by correlation-and nonlinearity-aware sparse bayesian learning","volume":"33","author":"Wan","year":"2014","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"7","key":"10.1016\/j.cmpb.2018.04.028_sbref0039","doi-asserted-by":"crossref","first-page":"1475","DOI":"10.1109\/TMI.2014.2314712","article-title":"Identifying the neuroanatomical basis of cognitive impairment in Alzheimer\u2018s disease by correlationand nonlinearity-aware sparse Bayesian learning","volume":"33","author":"Wan","year":"2014","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.cmpb.2018.04.028_bib0041","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"940","article-title":"Sparse Bayesian multi-task learning for predicting cognitive outcomes from neuroimaging measures in Alzheimer\u2019s disease","author":"Wan","year":"2012"},{"key":"10.1016\/j.cmpb.2018.04.028_bib0042","series-title":"Proceedings of the International Conference on Computer Vision","first-page":"6","article-title":"Sparse multi-task regression and feature selection to identify brain imaging predictors for memory performance","author":"Wang","year":"2011"},{"key":"10.1016\/j.cmpb.2018.04.028_bib0043","series-title":"Proceedings of the Advances in Neural Information Processing Systems","first-page":"1277","article-title":"High-order multi-task feature learning to identify longitudinal phenotypic markers for Alzheimer\u2019s disease progression prediction","author":"Wang","year":"2012"},{"issue":"4","key":"10.1016\/j.cmpb.2018.04.028_bib0044","doi-asserted-by":"crossref","first-page":"60","DOI":"10.1145\/2847421","article-title":"Efficient generalized fused lasso and its applications","volume":"7","author":"Xin","year":"2016","journal-title":"ACM Trans. Intell. Syst. Technol."},{"issue":"2","key":"10.1016\/j.cmpb.2018.04.028_bib0045","doi-asserted-by":"crossref","first-page":"182","DOI":"10.1016\/j.cmpb.2015.08.004","article-title":"Multi-modality sparse representation-based classification for Alzheimer\u2019s disease and mild cognitive impairment","volume":"122","author":"Xu","year":"2015","journal-title":"Comput. Methods Programs Biomed."},{"issue":"4","key":"10.1016\/j.cmpb.2018.04.028_bib0046","doi-asserted-by":"crossref","first-page":"1045","DOI":"10.3233\/JAD-151010","article-title":"Prediction of progressive mild cognitive impairment by multi-modal neuroimaging biomarkers","volume":"51","author":"Xu","year":"2016","journal-title":"J. Alzheimers Dis."},{"key":"10.1016\/j.cmpb.2018.04.028_bib0047","series-title":"Proceedings of the International Workshop on Multimodal Brain Image Analysis","first-page":"202","article-title":"Network-guided sparse learning for predicting cognitive outcomes from MRI measures","author":"Yan","year":"2013"},{"key":"10.1016\/j.cmpb.2018.04.028_bib0048","doi-asserted-by":"crossref","first-page":"S185","DOI":"10.1016\/j.neurobiolaging.2014.07.045","article-title":"Cortical surface biomarkers for predicting cognitive outcomes using group \u21132, 1 norm","volume":"36","author":"Yan","year":"2015","journal-title":"Neurobiol. Aging"},{"issue":"9","key":"10.1016\/j.cmpb.2018.04.028_bib0049","doi-asserted-by":"crossref","first-page":"2104","DOI":"10.1109\/TPAMI.2013.17","article-title":"Efficient methods for overlapping group lasso","volume":"35","author":"Yuan","year":"2013","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"2","key":"10.1016\/j.cmpb.2018.04.028_sbref0049","doi-asserted-by":"crossref","first-page":"895","DOI":"10.1016\/j.neuroimage.2011.09.069","article-title":"Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer\u2019s disease","volume":"59","author":"Zhang","year":"2012","journal-title":"Neuroimage"},{"key":"10.1016\/j.cmpb.2018.04.028_bib0051","doi-asserted-by":"crossref","first-page":"104","DOI":"10.1016\/j.neucom.2015.08.111","article-title":"L2, p-norm and sample constraint based feature selection and classification for AD diagnosis","volume":"195","author":"Zhang","year":"2016","journal-title":"Neurocomputing"},{"key":"10.1016\/j.cmpb.2018.04.028_bib0052","series-title":"Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI)","first-page":"733","article-title":"A convex formulation for learning task relationships in multi-task learning","author":"Zhang","year":"2010"},{"key":"10.1016\/j.cmpb.2018.04.028_bib0053","series-title":"Proceedings of the Advances in Neural Information processing systems","first-page":"702","article-title":"Clustered multi-task learning via alternating structure optimization","author":"Zhou","year":"2011"},{"key":"10.1016\/j.cmpb.2018.04.028_sbref0053","doi-asserted-by":"crossref","first-page":"233","DOI":"10.1016\/j.neuroimage.2013.03.073","article-title":"Modeling disease progression via multi-task learning","volume":"78","author":"Zhou","year":"2013","journal-title":"Neuroimage"},{"key":"10.1016\/j.cmpb.2018.04.028_bib0055","series-title":"Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","first-page":"814","article-title":"A multi-task learning formulation for predicting disease progression","author":"Zhou","year":"2011"},{"key":"10.1016\/j.cmpb.2018.04.028_bib0056","unstructured":"J. Zhou, Multi-task learning in crisis event classification, Technical Report, 2011."},{"issue":"3","key":"10.1016\/j.cmpb.2018.04.028_bib0057","doi-asserted-by":"crossref","first-page":"607","DOI":"10.1109\/TBME.2015.2466616","article-title":"Subspace regularized sparse multitask learning for multiclass neurodegenerative disease identification","volume":"63","author":"Zhu","year":"2016","journal-title":"IEEE Trans. Biomed. Eng."}],"container-title":["Computer Methods and Programs in Biomedicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0169260717312142?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0169260717312142?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2018,8,21]],"date-time":"2018-08-21T20:50:25Z","timestamp":1534884625000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0169260717312142"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,8]]},"references-count":57,"alternative-id":["S0169260717312142"],"URL":"https:\/\/doi.org\/10.1016\/j.cmpb.2018.04.028","relation":{},"ISSN":["0169-2607"],"issn-type":[{"value":"0169-2607","type":"print"}],"subject":[],"published":{"date-parts":[[2018,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Generalized fused group lasso regularized multi-task feature learning for predicting cognitive outcomes in Alzheimers disease","name":"articletitle","label":"Article Title"},{"value":"Computer Methods and Programs in Biomedicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cmpb.2018.04.028","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2018 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}