{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,20]],"date-time":"2024-08-20T07:15:45Z","timestamp":1724138145268},"reference-count":27,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2018,7,1]],"date-time":"2018-07-01T00:00:00Z","timestamp":1530403200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["81500078"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100007219","name":"Natural Science Foundation of Shanghai","doi-asserted-by":"publisher","award":["15ZR1408700"],"id":[{"id":"10.13039\/100007219","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["clinicalkey.jp","clinicalkey.com","clinicalkey.es","clinicalkey.fr","clinicalkey.com.au","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computer Methods and Programs in Biomedicine"],"published-print":{"date-parts":[[2018,7]]},"DOI":"10.1016\/j.cmpb.2018.04.001","type":"journal-article","created":{"date-parts":[[2018,4,3]],"date-time":"2018-04-03T09:14:17Z","timestamp":1522746857000},"page":"141-151","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":15,"special_numbering":"C","title":["Quantitative CT analysis of pulmonary nodules for lung adenocarcinoma risk classification based on an exponential weighted grey scale angular density distribution feature"],"prefix":"10.1016","volume":"160","author":[{"given":"Vanbang","family":"Le","sequence":"first","affiliation":[]},{"given":"Dawei","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Yu","family":"Zhu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7174-474X","authenticated-orcid":false,"given":"Bingbing","family":"Zheng","sequence":"additional","affiliation":[]},{"given":"Chunxue","family":"Bai","sequence":"additional","affiliation":[]},{"given":"Hongcheng","family":"Shi","sequence":"additional","affiliation":[]},{"given":"Jie","family":"Hu","sequence":"additional","affiliation":[]},{"given":"Changwen","family":"Zhai","sequence":"additional","affiliation":[]},{"given":"Shaohua","family":"Lu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.cmpb.2018.04.001_bib0001","doi-asserted-by":"crossref","first-page":"265","DOI":"10.4103\/0256-4602.101306","article-title":"Computer-aided detection and analysis of pulmonary nodule from CT images: a survey","volume":"29","author":"Dhara","year":"2012","journal-title":"IETE Tech. Rev."},{"key":"10.1016\/j.cmpb.2018.04.001_bib0002","doi-asserted-by":"crossref","first-page":"533","DOI":"10.2214\/AJR.10.5813","article-title":"Ground-glass nodules on chest CT as imaging biomarkers in the management of lung adenocarcinoma","volume":"196","author":"Goo","year":"2011","journal-title":"Am. J. Roentgenol."},{"key":"10.1016\/j.cmpb.2018.04.001_bib0003","doi-asserted-by":"crossref","first-page":"2654","DOI":"10.1016\/j.ejrad.2015.08.018","article-title":"Volumetric measurement of artificial pure ground-glass nodules at low-dose CT: comparisons between hybrid iterative reconstruction and filtered back projection","volume":"84","author":"Noriyuki","year":"2015","journal-title":"Eur. J. Radiol."},{"key":"10.1016\/j.cmpb.2018.04.001_bib0004","doi-asserted-by":"crossref","first-page":"9","DOI":"10.1093\/ejcts\/ezv316","article-title":"International Association for the Study of Lung Cancer\/American Thoracic Society\/European Respiratory Society classification predicts occult lymph node metastasis in clinically mediastinal node-negative lung adenocarcinoma","volume":"49","author":"Yeh","year":"2016","journal-title":"Eur. J. Cardiothorac. Surg."},{"key":"10.1016\/j.cmpb.2018.04.001_bib0005","doi-asserted-by":"crossref","first-page":"99","DOI":"10.1007\/s10278-014-9718-8","article-title":"Texture feature analysis for computer-aided diagnosis on pulmonary nodules","volume":"28","author":"Han","year":"2015","journal-title":"J. Digit. Imaging"},{"key":"10.1016\/j.cmpb.2018.04.001_bib0006","doi-asserted-by":"crossref","first-page":"73","DOI":"10.1007\/s11548-015-1245-7","article-title":"Automated pulmonary nodule CT image characterization in lung cancer screening","volume":"11","author":"Reeves","year":"2016","journal-title":"Int. J. Comput. Assist. Radiol. Surgery"},{"key":"10.1016\/j.cmpb.2018.04.001_bib0007","unstructured":"Cornell University, Vision and Image Analysis Group, ELCAP Public Lung Image Database. Available from: http:\/\/www.via.cornell.edu\/lungdb.html."},{"key":"10.1016\/j.cmpb.2018.04.001_bib0008","unstructured":"National cancer institute- Cancer Data Access System. Available from: https:\/\/biometry.nci.nih.gov\/cdas\/datasets\/nlst\/."},{"key":"10.1016\/j.cmpb.2018.04.001_bib0009","doi-asserted-by":"crossref","first-page":"9","DOI":"10.1186\/s12938-015-0003-y","article-title":"Automated system for lung nodules classification based on wavelet feature descriptor and support vector machine","volume":"14","author":"Orozco","year":"2015","journal-title":"Biomed. Eng. Online"},{"key":"10.1016\/j.cmpb.2018.04.001_bib0010","doi-asserted-by":"crossref","first-page":"1698","DOI":"10.1097\/JTO.0000000000000319","article-title":"Noninvasive risk stratification of lung adenocarcinoma using quantitative computed tomography","volume":"9","author":"Sushravya","year":"2014","journal-title":"J. Thoracic Oncol."},{"key":"10.1016\/j.cmpb.2018.04.001_bib0011","doi-asserted-by":"crossref","first-page":"737","DOI":"10.1164\/rccm.201503-0443OC","article-title":"Noninvasive computed tomography\u2013based risk stratification of lung adenocarcinomas in the National Lung Screening Trial","volume":"192","author":"Maldonado","year":"2015","journal-title":"Am. J. Respir. Crit. Care Med."},{"key":"10.1016\/j.cmpb.2018.04.001_bib0012","doi-asserted-by":"crossref","first-page":"452","DOI":"10.1097\/JTO.0b013e3182843721","article-title":"Noninvasive characterization of the histopathologic features of pulmonary nodules of the lung adenocarcinoma spectrum using computer-aided nodule assessment and risk yield (CANARY)-a pilot study","volume":"8","author":"Maldonado","year":"2013","journal-title":"J. Thoracic Oncol."},{"key":"10.1016\/j.cmpb.2018.04.001_bib0013","first-page":"1","article-title":"A combination of shape and texture features for classification of pulmonary nodules in lung CT images","volume":"6","author":"Dhara","year":"2016","journal-title":"J. Digit. Imaging"},{"key":"10.1016\/j.cmpb.2018.04.001_bib0014","doi-asserted-by":"crossref","first-page":"915","DOI":"10.1118\/1.3528204","article-title":"The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans","volume":"38","author":"Armato","year":"2011","journal-title":"Med. Phys."},{"key":"10.1016\/j.cmpb.2018.04.001_bib0015","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0104066","article-title":"Quantitative CT analysis of pulmonary ground-glass opacity nodules for the distinction of invasive adenocarcinoma from pre-invasive or minimally invasive adenocarcinoma","volume":"9","author":"Son","year":"2014","journal-title":"PLoS One"},{"key":"10.1016\/j.cmpb.2018.04.001_bib0016","doi-asserted-by":"crossref","first-page":"51","DOI":"10.1007\/s10278-009-9185-9","article-title":"Feature selection and performance evaluation of support vector machine (SVM)-based classifier for differentiating benign and malignant pulmonary nodules by computed tomography","volume":"23","author":"Zhu","year":"2010","journal-title":"J. Digit. Imaging"},{"key":"10.1016\/j.cmpb.2018.04.001_bib0017","doi-asserted-by":"crossref","first-page":"1160","DOI":"10.1109\/TMI.2016.2536809","article-title":"Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks","volume":"35","author":"Setio","year":"2016","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.cmpb.2018.04.001_bib0018","series-title":"Biennial International Conference on Information Processing in Medical Imaging, Springer Berlin Heidelberg","first-page":"772","article-title":"3D shape analysis for early diagnosis of malignant lung nodules","author":"El-Baz","year":"2011"},{"key":"10.1016\/j.cmpb.2018.04.001_bib0019","series-title":"Seminars in Thoracic and Cardiovascular Surgery","first-page":"120","article-title":"Computer-aided nodule assessment and risk yield risk management of adenocarcinoma: the future of imaging?","volume":"28","author":"Foley","year":"2016"},{"key":"10.1016\/j.cmpb.2018.04.001_bib0020","unstructured":"The Cancer Imaging Archive. https:\/\/wiki.cancerimagingarchive.net\/display\/Public\/LIDC-IDRI."},{"key":"10.1016\/j.cmpb.2018.04.001_bib0021","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.eswa.2016.05.024","article-title":"Hessian based approaches for 3D lung nodule segmentation","volume":"61","author":"Gon\u00e7alves","year":"2016","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.cmpb.2018.04.001_bib0022","doi-asserted-by":"crossref","first-page":"230","DOI":"10.1016\/j.compbiomed.2014.08.005","article-title":"Soft computing approach to 3D lung nodule segmentation in CT","volume":"53","author":"Badura","year":"2014","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.cmpb.2018.04.001_bib0023","doi-asserted-by":"crossref","first-page":"2583","DOI":"10.1016\/j.aej.2016.06.002","article-title":"Segmentation of lung nodule in CT data using active contour model and fuzzy C-mean clustering","volume":"55","author":"Nithila","year":"2016","journal-title":"Alexandria Eng. J."},{"key":"10.1016\/j.cmpb.2018.04.001_bib0024","doi-asserted-by":"crossref","DOI":"10.1155\/2016\/6215085","article-title":"Pulmonary nodule classification with deep convolutional neural networks on computed tomography images","author":"Li","year":"2016","journal-title":"Comput. Math. Methods Med."},{"key":"10.1016\/j.cmpb.2018.04.001_bib0025","series-title":"Proceedings of the fifth Berkeley symposium on mathematical statistics and probability","first-page":"281","article-title":"Some methods for classification and analysis of multivariate observations","volume":"1","author":"MacQueen","year":"1967"},{"key":"10.1016\/j.cmpb.2018.04.001_bib0026","doi-asserted-by":"crossref","first-page":"2676","DOI":"10.1016\/j.patcog.2015.02.016","article-title":"Generalized quadratic discriminant analysis","volume":"48","author":"Bose","year":"2015","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.cmpb.2018.04.001_bib0027","first-page":"138","article-title":"Meta random forests","volume":"2","author":"Boinee","year":"2005","journal-title":"Int. J. Comput. Intell."}],"container-title":["Computer Methods and Programs in Biomedicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0169260717307009?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0169260717307009?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2018,8,22]],"date-time":"2018-08-22T15:24:10Z","timestamp":1534951450000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0169260717307009"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,7]]},"references-count":27,"alternative-id":["S0169260717307009"],"URL":"https:\/\/doi.org\/10.1016\/j.cmpb.2018.04.001","relation":{},"ISSN":["0169-2607"],"issn-type":[{"value":"0169-2607","type":"print"}],"subject":[],"published":{"date-parts":[[2018,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Quantitative CT analysis of pulmonary nodules for lung adenocarcinoma risk classification based on an exponential weighted grey scale angular density distribution feature","name":"articletitle","label":"Article Title"},{"value":"Computer Methods and Programs in Biomedicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cmpb.2018.04.001","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2018 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}